fix: tensorboard

32k
大蒟蒻 3 years ago
parent 86f7be1310
commit 873b9f0ec4

@ -1,7 +1,7 @@
{ {
"train": { "train": {
"log_interval": 200, "log_interval": 200,
"eval_interval": 1000, "eval_interval": 200,
"seed": 1234, "seed": 1234,
"epochs": 10000, "epochs": 10000,
"learning_rate": 0.0001, "learning_rate": 0.0001,

@ -170,6 +170,7 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
# logger.info([x.item() for x in losses] + [global_step, lr]) # logger.info([x.item() for x in losses] + [global_step, lr])
pbar_train_loader.set_postfix(loss=[round(y, 2) for y in [x.item() for x in losses]], lr=lr) pbar_train_loader.set_postfix(loss=[round(y, 2) for y in [x.item() for x in losses]], lr=lr)
if global_step % hps.train.log_interval == 0:
scalar_dict = { scalar_dict = {
"loss/g/total": loss_gen_all, "loss/g/total": loss_gen_all,
"loss/d/total": loss_disc_all, "loss/d/total": loss_disc_all,
@ -187,9 +188,10 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
} }
global_step += 1
utils.summarize(writer=writer, global_step=global_step, images=image_dict, scalars=scalar_dict) utils.summarize(writer=writer, global_step=global_step, images=image_dict, scalars=scalar_dict)
global_step += 1
if rank == 0: if rank == 0:
# logger.info('====> Epoch: {}'.format(epoch)) # logger.info('====> Epoch: {}'.format(epoch))

Loading…
Cancel
Save