You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

57 lines
1.6 KiB
Python

import pandas as pd
from sklearn.model_selection import train_test_split
from itertools import product
import joblib
def get_state_vect_cols(prefix=''):
if prefix:
prefix += '_'
vectors = ['r', 'v']
components = ['x', 'y', 'z']
col_names = [f'{prefix}{v}_{c}' for v, c in product(vectors, components)]
return col_names
def create_train_data(seed = 0, test_size = 0.2):
"""
Description
-----------
create a new train set from dataset(.parquet) by using seed
Parameters
----------
seed : int (default=-1)
seed for train_test_split, let's say seed = 0 means random
test_size : double (default=0.2)
test_size for train_test_split
Returns
-------
and traindata in folder "create_traindata" named "seed_{seed}.td"
"""
df = pd.read_parquet("traindata/physics_preds.parquet")
feature_cols = [
'elapsed_seconds'
] + get_state_vect_cols('physics_pred') + get_state_vect_cols('start')
print(feature_cols)
# The target values are the errors between the physical model predictions
# and the ground truth observations
target_cols = get_state_vect_cols('physics_err')
print(target_cols)
# Create feature and target matrices
X = df[feature_cols]
y = df[target_cols]
data_keys = ['X_train', 'X_test', 'y_train', 'y_test']
if seed == 0:
data_vals = train_test_split(X, y, test_size=test_size)
else:
data_vals = train_test_split(X, y, test_size=test_size, random_state=seed)
train_test_data = dict(zip(data_keys, data_vals))
joblib.dump(train_test_data, f"create_datas/seed_{seed}.td")