Fri, 22 Oct 2021 20:35:54 GMT

master
大蒟蒻 4 years ago
parent f260bbbbce
commit 0d38673a61

@ -1,3 +1,3 @@
{
"python.pythonPath": "D:\\PortableApps\\Python\\3.9\\Scripts\\python.exe"
"python.pythonPath": "D:\\PortableApps\\Python\\python.exe"
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 KiB

@ -1,13 +1,8 @@
# %%
from typing import Union
import pandas as pd
# %%
from itertools import product
from torch.nn.modules.activation import ReLU
from torch.nn.modules.linear import Linear
def get_state_vect_cols(prefix=''):
if prefix:
@ -24,7 +19,6 @@ test_set = df[df['aso_id'] == "05277"]
train_set = df.groupby('aso_id').apply(lambda x: x.head(x.count()[0] - 3))
print(df.count()[0], train_set.count()[0], test_set.count()[0])
test_set
# %%
from sklearn.model_selection import train_test_split
@ -47,40 +41,60 @@ train_test_data = dict(zip(data_keys, data_vals))
# %%
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader
from sklearn import metrics
TestNet2 = lambda: nn.Sequential(
nn.Linear(13, 32),
nn.Linear(13, 64),
nn.ReLU6(),
nn.Linear(64, 64),
nn.LeakyReLU(),
nn.Linear(32, 16),
nn.Sigmoid(),
nn.Linear(16, 1),
nn.Linear(64, 1),
)
nets = {}
X_train = torch.tensor(train_test_data["X_train"].values)
X_train = torch.tensor(train_test_data["X_train"].values,
dtype=torch.float32).cuda()
y_train = train_test_data["y_train"]
X_test = torch.tensor(train_test_data['X_test'].values,
dtype=torch.float32).cuda()
y_test = train_test_data['y_test']
r2s = []
for target_col in y_train.columns:
y1 = torch.tensor(y_train[target_col].values).reshape(-1, 1)
y1 = torch.tensor(y_train[target_col].values,
dtype=torch.float32).reshape(-1, 1).cuda()
print(X.shape, y1.shape)
net = TestNet2().double()
opti = torch.optim.SGD(net.parameters(), lr=0.04)
net = TestNet2().cuda()
opti = torch.optim.SGD(net.parameters(), lr=0.02)
loss_func = nn.MSELoss()
train_dataloader = DataLoader(TensorDataset(X_train, y1), batch_size=320)
for t in range(10000):
pred = net(X_train)
loss = loss_func(pred, y1)
if t % 1000 == 0:
print(f'Epoch {t}, loss {loss}')
opti.zero_grad()
loss.backward()
opti.step()
for batch, (x, y) in enumerate(train_dataloader):
pred = net(x)
loss = loss_func(pred, y)
opti.zero_grad()
torch.sqrt(loss).backward()
opti.step()
with torch.no_grad():
y = y_test[target_col]
y_hat = net(X_test).cpu().numpy()
rmse = metrics.mean_squared_error(y, y_hat, squared=False)
r2 = metrics.r2_score(y, y_hat)
r2s.append(r2)
print(f"Epoch {t}: r2={r2}, rmse={rmse}")
nets[target_col] = net
print(target_col)
break
import matplotlib.pyplot as plt
plt.plot(r2s)
plt.show()
# %%
X, ys = train_test_data['X_test'], train_test_data['y_test']
evals = []
from sklearn import metrics
with torch.no_grad():
for target_col, net in nets.items():
y_hat = net(torch.tensor(X.values)) # fake

Loading…
Cancel
Save