|
|
import os
|
|
|
import argparse
|
|
|
import re
|
|
|
|
|
|
from tqdm import tqdm
|
|
|
from random import shuffle
|
|
|
import json
|
|
|
config_template = {
|
|
|
"train": {
|
|
|
"log_interval": 200,
|
|
|
"eval_interval": 1000,
|
|
|
"seed": 1234,
|
|
|
"epochs": 10000,
|
|
|
"learning_rate": 1e-4,
|
|
|
"betas": [0.8, 0.99],
|
|
|
"eps": 1e-9,
|
|
|
"batch_size": 12,
|
|
|
"fp16_run": False,
|
|
|
"lr_decay": 0.999875,
|
|
|
"segment_size": 17920,
|
|
|
"init_lr_ratio": 1,
|
|
|
"warmup_epochs": 0,
|
|
|
"c_mel": 45,
|
|
|
"c_kl": 1.0,
|
|
|
"use_sr": True,
|
|
|
"max_speclen": 384,
|
|
|
"port": "8001"
|
|
|
},
|
|
|
"data": {
|
|
|
"training_files":"filelists/train.txt",
|
|
|
"validation_files":"filelists/val.txt",
|
|
|
"max_wav_value": 32768.0,
|
|
|
"sampling_rate": 32000,
|
|
|
"filter_length": 1280,
|
|
|
"hop_length": 320,
|
|
|
"win_length": 1280,
|
|
|
"n_mel_channels": 80,
|
|
|
"mel_fmin": 0.0,
|
|
|
"mel_fmax": None
|
|
|
},
|
|
|
"model": {
|
|
|
"inter_channels": 192,
|
|
|
"hidden_channels": 192,
|
|
|
"filter_channels": 768,
|
|
|
"n_heads": 2,
|
|
|
"n_layers": 6,
|
|
|
"kernel_size": 3,
|
|
|
"p_dropout": 0.1,
|
|
|
"resblock": "1",
|
|
|
"resblock_kernel_sizes": [3,7,11],
|
|
|
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
|
|
"upsample_rates": [10,8,2,2],
|
|
|
"upsample_initial_channel": 512,
|
|
|
"upsample_kernel_sizes": [16,16,4,4],
|
|
|
"n_layers_q": 3,
|
|
|
"use_spectral_norm": False,
|
|
|
"gin_channels": 256,
|
|
|
"ssl_dim": 256,
|
|
|
"n_speakers": 0,
|
|
|
},
|
|
|
"spk":{
|
|
|
"nen": 0,
|
|
|
"paimon": 1,
|
|
|
"yunhao": 2
|
|
|
}
|
|
|
}
|
|
|
|
|
|
pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
parser = argparse.ArgumentParser()
|
|
|
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
|
|
|
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
|
|
|
parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
|
|
|
parser.add_argument("--source_dir", type=str, default="./dataset/32k", help="path to source dir")
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
train = []
|
|
|
val = []
|
|
|
test = []
|
|
|
idx = 0
|
|
|
spk_dict = {}
|
|
|
spk_id = 0
|
|
|
for speaker in tqdm(os.listdir(args.source_dir)):
|
|
|
spk_dict[speaker] = spk_id
|
|
|
spk_id += 1
|
|
|
wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))]
|
|
|
for wavpath in wavs:
|
|
|
if not pattern.match(wavpath):
|
|
|
print(f"warning:文件名{wavpath}中包含非字母数字下划线,可能会导致错误。(也可能不会)")
|
|
|
if len(wavs) < 10:
|
|
|
print(f"warning:{speaker}数据集数量小于10条,请补充数据")
|
|
|
wavs = [i for i in wavs if i.endswith("wav")]
|
|
|
shuffle(wavs)
|
|
|
train += wavs[2:-2]
|
|
|
val += wavs[:2]
|
|
|
test += wavs[-2:]
|
|
|
n_speakers = len(spk_dict.keys())*2
|
|
|
shuffle(train)
|
|
|
shuffle(val)
|
|
|
shuffle(test)
|
|
|
|
|
|
print("Writing", args.train_list)
|
|
|
with open(args.train_list, "w") as f:
|
|
|
for fname in tqdm(train):
|
|
|
wavpath = fname
|
|
|
f.write(wavpath + "\n")
|
|
|
|
|
|
print("Writing", args.val_list)
|
|
|
with open(args.val_list, "w") as f:
|
|
|
for fname in tqdm(val):
|
|
|
wavpath = fname
|
|
|
f.write(wavpath + "\n")
|
|
|
|
|
|
print("Writing", args.test_list)
|
|
|
with open(args.test_list, "w") as f:
|
|
|
for fname in tqdm(test):
|
|
|
wavpath = fname
|
|
|
f.write(wavpath + "\n")
|
|
|
|
|
|
config_template["model"]["n_speakers"] = n_speakers
|
|
|
config_template["spk"] = spk_dict
|
|
|
print("Writing configs/config.json")
|
|
|
with open("configs/config.json", "w") as f:
|
|
|
json.dump(config_template, f, indent=2)
|