You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
5.9 KiB
Python
155 lines
5.9 KiB
Python
import time
|
|
import os
|
|
import random
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.data
|
|
|
|
import commons
|
|
from mel_processing import spectrogram_torch, spec_to_mel_torch
|
|
from utils import load_wav_to_torch, load_filepaths_and_text, transform
|
|
|
|
# import h5py
|
|
|
|
|
|
"""Multi speaker version"""
|
|
|
|
|
|
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
"""
|
|
1) loads audio, speaker_id, text pairs
|
|
2) normalizes text and converts them to sequences of integers
|
|
3) computes spectrograms from audio files.
|
|
"""
|
|
|
|
def __init__(self, audiopaths, hparams):
|
|
self.audiopaths = load_filepaths_and_text(audiopaths)
|
|
self.max_wav_value = hparams.data.max_wav_value
|
|
self.sampling_rate = hparams.data.sampling_rate
|
|
self.filter_length = hparams.data.filter_length
|
|
self.hop_length = hparams.data.hop_length
|
|
self.win_length = hparams.data.win_length
|
|
self.sampling_rate = hparams.data.sampling_rate
|
|
self.use_sr = hparams.train.use_sr
|
|
self.spec_len = hparams.train.max_speclen
|
|
self.spk_map = hparams.spk
|
|
|
|
random.seed(1234)
|
|
random.shuffle(self.audiopaths)
|
|
|
|
def get_audio(self, filename):
|
|
filename = filename.replace("\\", "/")
|
|
audio, sampling_rate = load_wav_to_torch(filename)
|
|
if sampling_rate != self.sampling_rate:
|
|
raise ValueError("{} SR doesn't match target {} SR".format(
|
|
sampling_rate, self.sampling_rate))
|
|
audio_norm = audio / self.max_wav_value
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
spec_filename = filename.replace(".wav", ".spec.pt")
|
|
if os.path.exists(spec_filename):
|
|
spec = torch.load(spec_filename)
|
|
else:
|
|
spec = spectrogram_torch(audio_norm, self.filter_length,
|
|
self.sampling_rate, self.hop_length, self.win_length,
|
|
center=False)
|
|
spec = torch.squeeze(spec, 0)
|
|
torch.save(spec, spec_filename)
|
|
|
|
spk = filename.split("/")[-2]
|
|
spk = torch.LongTensor([self.spk_map[spk]])
|
|
|
|
c = torch.load(filename + ".soft.pt").squeeze(0)
|
|
c = torch.repeat_interleave(c, repeats=2, dim=1)
|
|
|
|
f0 = np.load(filename + ".f0.npy")
|
|
f0 = torch.FloatTensor(f0)
|
|
lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
|
|
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape, filename)
|
|
assert abs(lmin - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
|
assert abs(lmin - c.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
|
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
|
|
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
|
_spec, _c, _audio_norm, _f0 = spec, c, audio_norm, f0
|
|
while spec.size(-1) < self.spec_len:
|
|
spec = torch.cat((spec, _spec), -1)
|
|
c = torch.cat((c, _c), -1)
|
|
f0 = torch.cat((f0, _f0), -1)
|
|
audio_norm = torch.cat((audio_norm, _audio_norm), -1)
|
|
start = random.randint(0, spec.size(-1) - self.spec_len)
|
|
end = start + self.spec_len
|
|
spec = spec[:, start:end]
|
|
c = c[:, start:end]
|
|
f0 = f0[start:end]
|
|
audio_norm = audio_norm[:, start * self.hop_length:end * self.hop_length]
|
|
|
|
return c, f0, spec, audio_norm, spk
|
|
|
|
def __getitem__(self, index):
|
|
return self.get_audio(self.audiopaths[index][0])
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths)
|
|
|
|
|
|
class EvalDataLoader(torch.utils.data.Dataset):
|
|
"""
|
|
1) loads audio, speaker_id, text pairs
|
|
2) normalizes text and converts them to sequences of integers
|
|
3) computes spectrograms from audio files.
|
|
"""
|
|
|
|
def __init__(self, audiopaths, hparams):
|
|
self.audiopaths = load_filepaths_and_text(audiopaths)
|
|
self.max_wav_value = hparams.data.max_wav_value
|
|
self.sampling_rate = hparams.data.sampling_rate
|
|
self.filter_length = hparams.data.filter_length
|
|
self.hop_length = hparams.data.hop_length
|
|
self.win_length = hparams.data.win_length
|
|
self.sampling_rate = hparams.data.sampling_rate
|
|
self.use_sr = hparams.train.use_sr
|
|
self.audiopaths = self.audiopaths[:5]
|
|
self.spk_map = hparams.spk
|
|
|
|
|
|
def get_audio(self, filename):
|
|
filename = filename.replace("\\", "/")
|
|
audio, sampling_rate = load_wav_to_torch(filename)
|
|
if sampling_rate != self.sampling_rate:
|
|
raise ValueError("{} SR doesn't match target {} SR".format(
|
|
sampling_rate, self.sampling_rate))
|
|
audio_norm = audio / self.max_wav_value
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
spec_filename = filename.replace(".wav", ".spec.pt")
|
|
if os.path.exists(spec_filename):
|
|
spec = torch.load(spec_filename)
|
|
else:
|
|
spec = spectrogram_torch(audio_norm, self.filter_length,
|
|
self.sampling_rate, self.hop_length, self.win_length,
|
|
center=False)
|
|
spec = torch.squeeze(spec, 0)
|
|
torch.save(spec, spec_filename)
|
|
|
|
spk = filename.split("/")[-2]
|
|
spk = torch.LongTensor([self.spk_map[spk]])
|
|
|
|
c = torch.load(filename + ".soft.pt").squeeze(0)
|
|
|
|
c = torch.repeat_interleave(c, repeats=2, dim=1)
|
|
|
|
f0 = np.load(filename + ".f0.npy")
|
|
f0 = torch.FloatTensor(f0)
|
|
lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
|
|
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
|
assert abs(f0.shape[0] - spec.shape[-1]) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
|
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
|
|
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
|
|
|
return c, f0, spec, audio_norm, spk
|
|
|
|
def __getitem__(self, index):
|
|
return self.get_audio(self.audiopaths[index][0])
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths)
|
|
|