You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
340 lines
12 KiB
HTML
340 lines
12 KiB
HTML
|
|
|
|
<!doctype html>
|
|
<html lang="en" class="no-js">
|
|
<head>
|
|
|
|
|
|
<meta charset="utf-8">
|
|
|
|
|
|
|
|
<!-- begin SEO -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<title>Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Internet-of-Vehicles - Yuchen Lei</title>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<meta property="og:locale" content="en-US">
|
|
<meta property="og:site_name" content="Yuchen Lei">
|
|
<meta property="og:title" content="Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Internet-of-Vehicles">
|
|
|
|
|
|
<link rel="canonical" href="https://github.com/pages/academicpages/academicpages.github.io/publication/02-2024-matd3">
|
|
<meta property="og:url" content="https://github.com/pages/academicpages/academicpages.github.io/publication/02-2024-matd3">
|
|
|
|
|
|
|
|
<meta property="og:description" content="The Internet of Vehicles (IoV) has witnessed a significant growth in the number of participants. This rapid expansion has increased demands for computing resources and quality of service (QoS), posing challenges for mobile edge computing (MEC) in the IoV domain. Efficiently allocating computing power to meet these service demands has become a crucial concern. Therefore, joint optimization of offloading decisions and power allocation is required to achieve the tradeoff between task latency and energy consumption. To address the above challenge, we propose a multi-agent reinforcement learning (MARL) method called multi-agent twin delayed deep deterministic policy gradient (MA-TD3) in this paper. Compared to its predecessor, multi-agent deep deterministic policy gradient (MADDPG), this algorithm improves performance and execution speed. It solves the slow convergence problem caused by Q-value overestimation and reduces the computational cost. The experimental results illustrate that the proposed algorithm reaches an observable performance improvement.">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<meta property="og:type" content="article">
|
|
<meta property="article:published_time" content="2024-07-03T00:00:00-07:00">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script type="application/ld+json">
|
|
{
|
|
"@context" : "http://schema.org",
|
|
"@type" : "Person",
|
|
"name" : "Yuchen Lei",
|
|
"url" : "https://github.com/pages/academicpages/academicpages.github.io",
|
|
"sameAs" : null
|
|
}
|
|
</script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<!-- end SEO -->
|
|
|
|
|
|
<link href="/feed.xml" type="application/atom+xml" rel="alternate" title="Yuchen Lei Feed">
|
|
|
|
<!-- http://t.co/dKP3o1e -->
|
|
<meta name="HandheldFriendly" content="True">
|
|
<meta name="MobileOptimized" content="320">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
<script>
|
|
document.documentElement.className = document.documentElement.className.replace(/\bno-js\b/g, '') + ' js ';
|
|
</script>
|
|
|
|
<!-- For all browsers -->
|
|
<link rel="stylesheet" href="/assets/css/main.css">
|
|
|
|
<meta http-equiv="cleartype" content="on">
|
|
|
|
|
|
<!-- start custom head snippets -->
|
|
|
|
<link rel="apple-touch-icon" sizes="57x57" href="/images/apple-touch-icon-57x57.png?v=M44lzPylqQ">
|
|
<link rel="apple-touch-icon" sizes="60x60" href="/images/apple-touch-icon-60x60.png?v=M44lzPylqQ">
|
|
<link rel="apple-touch-icon" sizes="72x72" href="/images/apple-touch-icon-72x72.png?v=M44lzPylqQ">
|
|
<link rel="apple-touch-icon" sizes="76x76" href="/images/apple-touch-icon-76x76.png?v=M44lzPylqQ">
|
|
<link rel="apple-touch-icon" sizes="114x114" href="/images/apple-touch-icon-114x114.png?v=M44lzPylqQ">
|
|
<link rel="apple-touch-icon" sizes="120x120" href="/images/apple-touch-icon-120x120.png?v=M44lzPylqQ">
|
|
<link rel="apple-touch-icon" sizes="144x144" href="/images/apple-touch-icon-144x144.png?v=M44lzPylqQ">
|
|
<link rel="apple-touch-icon" sizes="152x152" href="/images/apple-touch-icon-152x152.png?v=M44lzPylqQ">
|
|
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-180x180.png?v=M44lzPylqQ">
|
|
<link rel="icon" type="image/png" href="/images/favicon-32x32.png?v=M44lzPylqQ" sizes="32x32">
|
|
<link rel="icon" type="image/png" href="/images/android-chrome-192x192.png?v=M44lzPylqQ" sizes="192x192">
|
|
<link rel="icon" type="image/png" href="/images/favicon-96x96.png?v=M44lzPylqQ" sizes="96x96">
|
|
<link rel="icon" type="image/png" href="/images/favicon-16x16.png?v=M44lzPylqQ" sizes="16x16">
|
|
<link rel="manifest" href="/images/manifest.json?v=M44lzPylqQ">
|
|
<link rel="mask-icon" href="/images/safari-pinned-tab.svg?v=M44lzPylqQ" color="#000000">
|
|
<link rel="shortcut icon" href="/images/favicon.ico?v=M44lzPylqQ">
|
|
<meta name="msapplication-TileColor" content="#000000">
|
|
<meta name="msapplication-TileImage" content="/images/mstile-144x144.png?v=M44lzPylqQ">
|
|
<meta name="msapplication-config" content="/images/browserconfig.xml?v=M44lzPylqQ">
|
|
<meta name="theme-color" content="#ffffff">
|
|
<link rel="stylesheet" href="/assets/css/academicons.css"/>
|
|
|
|
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ TeX: { equationNumbers: { autoNumber: "all" } } }); </script>
|
|
<script type="text/x-mathjax-config">
|
|
MathJax.Hub.Config({
|
|
tex2jax: {
|
|
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
|
|
processEscapes: true
|
|
}
|
|
});
|
|
</script>
|
|
<script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/latest.js?config=TeX-MML-AM_CHTML' async></script>
|
|
|
|
<!-- end custom head snippets -->
|
|
|
|
</head>
|
|
|
|
<body>
|
|
|
|
<!--[if lt IE 9]>
|
|
<div class="notice--danger align-center" style="margin: 0;">You are using an <strong>outdated</strong> browser. Please <a href="http://browsehappy.com/">upgrade your browser</a> to improve your experience.</div>
|
|
<![endif]-->
|
|
|
|
|
|
<div class="masthead">
|
|
<div class="masthead__inner-wrap">
|
|
<div class="masthead__menu">
|
|
<nav id="site-nav" class="greedy-nav">
|
|
<button><div class="navicon"></div></button>
|
|
<ul class="visible-links">
|
|
<li class="masthead__menu-item masthead__menu-item--lg"><a href="/">Yuchen Lei</a></li>
|
|
|
|
|
|
<li class="masthead__menu-item"><a href="/publications/">Publications</a></li>
|
|
|
|
|
|
<li class="masthead__menu-item"><a href="/teaching/">Teaching</a></li>
|
|
|
|
</ul>
|
|
<ul class="hidden-links hidden"></ul>
|
|
</nav>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div id="main" role="main">
|
|
|
|
|
|
|
|
<div class="sidebar sticky">
|
|
|
|
|
|
|
|
|
|
<div itemscope itemtype="http://schema.org/Person">
|
|
|
|
<div class="author__avatar">
|
|
|
|
<img src="/images/profile.png" class="author__avatar" alt="Yuchen Lei">
|
|
|
|
</div>
|
|
|
|
<div class="author__content">
|
|
<h3 class="author__name">Yuchen Lei</h3>
|
|
<p class="author__bio">MSc @ Wuhan University</p>
|
|
</div>
|
|
|
|
<div class="author__urls-wrapper">
|
|
<button class="btn btn--inverse">Follow</button>
|
|
<ul class="author__urls social-icons">
|
|
|
|
<li><i class="fa fa-fw fa-map-marker" aria-hidden="true"></i> Wuhan, Hubei, China</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li><a href="https://www.researchgate.net/profile/Yuchen-Lei-8"><i class="fab fa-fw fa-researchgate" aria-hidden="true"></i> ResearchGate</a></li>
|
|
|
|
|
|
|
|
|
|
|
|
<li><a href="https://www.linkedin.com/in/https://www.linkedin.com/in/~yclei/"><i class="fab fa-fw fa-linkedin" aria-hidden="true"></i> LinkedIn</a></li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li><a href="https://github.com/TooYoungTooSimp"><i class="fab fa-fw fa-github" aria-hidden="true"></i> Github</a></li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li><a href="https://scholar.google.com/citations?user=sCVs-IUAAAAJ"><i class="fas fa-fw fa-graduation-cap"></i> Google Scholar</a></li>
|
|
|
|
|
|
|
|
<li><a href="https://orcid.org/0009-0005-4610-6550"><i class="ai ai-orcid-square ai-fw"></i> ORCID</a></li>
|
|
|
|
|
|
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<article class="page" itemscope itemtype="http://schema.org/CreativeWork">
|
|
<meta itemprop="headline" content="Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Internet-of-Vehicles">
|
|
<meta itemprop="description" content="The Internet of Vehicles (IoV) has witnessed a significant growth in the number of participants. This rapid expansion has increased demands for computing resources and quality of service (QoS), posing challenges for mobile edge computing (MEC) in the IoV domain. Efficiently allocating computing power to meet these service demands has become a crucial concern. Therefore, joint optimization of offloading decisions and power allocation is required to achieve the tradeoff between task latency and energy consumption. To address the above challenge, we propose a multi-agent reinforcement learning (MARL) method called multi-agent twin delayed deep deterministic policy gradient (MA-TD3) in this paper. Compared to its predecessor, multi-agent deep deterministic policy gradient (MADDPG), this algorithm improves performance and execution speed. It solves the slow convergence problem caused by Q-value overestimation and reduces the computational cost. The experimental results illustrate that the proposed algorithm reaches an observable performance improvement.">
|
|
<meta itemprop="datePublished" content="July 03, 2024">
|
|
|
|
|
|
<div class="page__inner-wrap">
|
|
|
|
<header>
|
|
<h1 class="page__title" itemprop="headline">Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Internet-of-Vehicles
|
|
</h1>
|
|
|
|
|
|
|
|
|
|
<p>Published in <i>IEEE Wireless Communications and Networking Conference (WCNC)</i>, 2024 </p>
|
|
|
|
|
|
|
|
|
|
<p>Recommended citation: "Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Internet-of-Vehicles," 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 2024, pp. 1-6, doi: 10.1109/WCNC57260.2024.10571109. <a href="https://ieeexplore.ieee.org/document/10571109"><u>https://ieeexplore.ieee.org/document/10571109</u></a></p>
|
|
|
|
|
|
</header>
|
|
|
|
|
|
<section class="page__content" itemprop="text">
|
|
<p>The Internet of Vehicles (IoV) has witnessed a significant growth in the number of participants. This rapid expansion has increased demands for computing resources and quality of service (QoS), posing challenges for mobile edge computing (MEC) in the IoV domain. Efficiently allocating computing power to meet these service demands has become a crucial concern. Therefore, joint optimization of offloading decisions and power allocation is required to achieve the tradeoff between task latency and energy consumption. To address the above challenge, we propose a multi-agent reinforcement learning (MARL) method called multi-agent twin delayed deep deterministic policy gradient (MA-TD3) in this paper. Compared to its predecessor, multi-agent deep deterministic policy gradient (MADDPG), this algorithm improves performance and execution speed. It solves the slow convergence problem caused by Q-value overestimation and reduces the computational cost. The experimental results illustrate that the proposed algorithm reaches an observable performance improvement.</p>
|
|
|
|
|
|
</section>
|
|
|
|
<footer class="page__meta">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</footer>
|
|
|
|
|
|
|
|
<section class="page__share">
|
|
|
|
<h4 class="page__share-title">Share on</h4>
|
|
|
|
|
|
<a href="https://twitter.com/intent/tweet?text=/publication/02-2024-matd3" class="btn btn--twitter" title="Share on Twitter"><i class="fab fa-twitter" aria-hidden="true"></i><span> Twitter</span></a>
|
|
|
|
<a href="https://www.facebook.com/sharer/sharer.php?u=/publication/02-2024-matd3" class="btn btn--facebook" title="Share on Facebook"><i class="fab fa-facebook" aria-hidden="true"></i><span> Facebook</span></a>
|
|
|
|
<a href="https://www.linkedin.com/shareArticle?mini=true&url=/publication/02-2024-matd3" class="btn btn--linkedin" title="Share on LinkedIn"><i class="fab fa-linkedin" aria-hidden="true"></i><span> LinkedIn</span></a>
|
|
</section>
|
|
|
|
|
|
|
|
|
|
<nav class="pagination">
|
|
|
|
<a href="/publication/01-2023-babd" class="pagination--pager" title="BABD: A Bitcoin Address Behavior Dataset for Pattern Analysis
|
|
">Previous</a>
|
|
|
|
|
|
<a href="#" class="pagination--pager disabled">Next</a>
|
|
|
|
</nav>
|
|
|
|
</div>
|
|
|
|
|
|
</article>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<script src="/assets/js/main.min.js"></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</body>
|
|
</html>
|
|
|