You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

114 lines
3.5 KiB
Python

from scipy.sparse.construct import random
from normal_use import *
sumRegressors = [LGBMRegressor, RandomForestRegressor, XGBRegressor, CatBoostRegressor]
sumRegressor = Union[type(sumRegressors)]
sumParams = [{},{},{},{"silent": True}]
weight = [0.1, 0.2, 0.3, 0.4]
Sums = {}
train_test_data = None
out_weights = []
oof_train = {}
oof_test = {}
# Some changes
# LinearRegression, Ridge, XGBRegressor, CatBoostRegressor, LGBMRegressor
# deepforest.CascadeForestRegressor
REG_TOTAL = Ridge
def get_random_small_train(X, y, Percentage = 0.8, seed = 0):
# return X_train & y_train
data_keys = ['X_train', 'X_test', 'y_train', 'y_test']
data_vals = train_test_split(X, y, random_state=seed,test_size=(1-Percentage))
train_test_data = dict(zip(data_keys, data_vals))
return train_test_data['X_train'], train_test_data['y_train']
def train_one_regressor(id, regType: sumRegressor, use_RFsample = False, seed = 0):
full_X, full_ys = train_test_data['X_train'], train_test_data['y_train']
tX, tys = train_test_data['X_test'], train_test_data['y_test']
X, ys = full_X, full_ys
if use_RFsample:
X, ys = get_random_small_train(X, ys, seed=seed)
# which xxx_moon?
# make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)
# pass
check_X_y(X, ys, multi_output=True)
models = {}
evals = []
for target_col in ys.columns:
y = ys[target_col]
reg = regType(**sumParams[id])
reg.fit(X, y)
models[target_col] = reg
# test in full train_test
y_hat = reg.predict(full_X)
oof_train[target_col].append(y_hat.reshape(-1, 1))
# predict test
ty_hat = reg.predict(tX)
oof_test[target_col].append(ty_hat.reshape(-1, 1))
ty = tys[target_col]
# one evals
rmse = metrics.mean_squared_error(ty, ty_hat, squared=False)
r2 = metrics.r2_score(ty, ty_hat)
eval_dict = {'Error': target_col, 'RMSE': rmse, 'R^2': r2}
evals.append(eval_dict)
print(regType.__name__)
print(pd.DataFrame(evals))
print("Average R2: ", average_R2(evals))
joblib.dump(models, f"linear/{regType.__name__}_study_{id}.model")
def train_linear_sumer():
ys = train_test_data['y_train']
tys = train_test_data['y_test'] # real
evals = []
for target_col in oof_train:
X = np.hstack(oof_train[target_col])
tX = np.hstack(oof_test[target_col])
print(ys.shape,X.shape,tys.shape,tX.shape)
y = ys[target_col]
ty = tys[target_col]
clf = REG_TOTAL()
clf.fit(X, y)
ty_hat = clf.predict(tX) # fake
rmse = metrics.mean_squared_error(ty, ty_hat, squared=False)
r2 = metrics.r2_score(ty, ty_hat)
eval_dict = {'Error': target_col, 'RMSE': rmse, 'R^2': r2}
evals.append(eval_dict)
print("linear *study* for {} regressors!".format(len(sumRegressors)))
print(pd.DataFrame(evals))
print("Average R2: ", average_R2(evals))
def study_linear(trainset):
"""
Description
-----------
create a linear combination, weight and regressors here to change
Parameters
----------
trainset : dict
train_data_set
Returns
-------
print result on screen
"""
global train_test_data
train_test_data = trainset
for target_col in train_test_data['y_train'].columns:
oof_train[target_col] = []
oof_test[target_col] = []
for i, reg in enumerate(sumRegressors):
train_one_regressor(i, reg, use_RFsample=True, seed=1024)
train_linear_sumer()