from ngboost import NGBRegressor from sklearn.ensemble import RandomForestRegressor from catboost import CatBoostRegressor from lightgbm import LGBMRegressor from xgboost import XGBRegressor from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.model_selection import KFold import deepforest import numpy as np import pandas as pd from typing import Union from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.datasets import make_moons from sklearn.utils.validation import check_X_y import joblib from sklearn.metrics import r2_score def average_R2(evals): sum = 0 for item in evals: sum += item['R^2'] return sum/len(evals)