diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 0000000..b3c267d --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,6 @@ +{ + "python.analysis.extraPaths": [ + "./codes", + "./regressors" + ] +} \ No newline at end of file diff --git a/README.md b/README.md index b8a1a29..a64d048 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,22 @@ # ssa_everyone -more test, more hope \ No newline at end of file +more test, more hope + +目前更新的regressor技术都在同名文件夹,使用有点怪因为调整都在对应python里而不是总的test里。 + +明天在改把。 + + + +**test_full.py可以试试,就在这master位置打开把,要不然感觉可能会混乱位置** + +然后新regressor就往那边丢了,终于是分开了,天—— + +细节可能需要修一修,average也有了,seed可选,model太大就不传勒 + + + +明天考虑加入nn结构和其他更多厕所 + + + diff --git a/catboost_info/catboost_training.json b/catboost_info/catboost_training.json new file mode 100644 index 0000000..e118341 --- /dev/null +++ b/catboost_info/catboost_training.json @@ -0,0 +1,1004 @@ +{ +"meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":1000,"learn_sets":["learn"],"name":"experiment"}, +"iterations":[ +{"learn":[3662.575683],"iteration":0,"passed_time":0.001048224102,"remaining_time":1.047175878}, +{"learn":[3555.636322],"iteration":1,"passed_time":0.002035863078,"remaining_time":1.015895676}, +{"learn":[3450.779167],"iteration":2,"passed_time":0.002903879778,"remaining_time":0.9650560462}, +{"learn":[3350.517801],"iteration":3,"passed_time":0.003862126061,"remaining_time":0.9616693892}, +{"learn":[3255.662239],"iteration":4,"passed_time":0.004641087248,"remaining_time":0.9235763624}, +{"learn":[3168.341562],"iteration":5,"passed_time":0.005337226138,"remaining_time":0.8842004635}, +{"learn":[3083.09696],"iteration":6,"passed_time":0.006049819452,"remaining_time":0.8582101022}, +{"learn":[3001.252663],"iteration":7,"passed_time":0.006773348314,"remaining_time":0.839895191}, +{"learn":[2917.435051],"iteration":8,"passed_time":0.007520144908,"remaining_time":0.8280515115}, +{"learn":[2837.145765],"iteration":9,"passed_time":0.008287206221,"remaining_time":0.8204334159}, +{"learn":[2766.450459],"iteration":10,"passed_time":0.009105048449,"remaining_time":0.8186266287}, +{"learn":[2688.914783],"iteration":11,"passed_time":0.009847723869,"remaining_time":0.8107959319}, +{"learn":[2614.472366],"iteration":12,"passed_time":0.01053569021,"remaining_time":0.7999020182}, +{"learn":[2548.570089],"iteration":13,"passed_time":0.01128033416,"remaining_time":0.7944578204}, +{"learn":[2490.007404],"iteration":14,"passed_time":0.011977249,"remaining_time":0.7865060177}, +{"learn":[2428.190922],"iteration":15,"passed_time":0.01267087238,"remaining_time":0.7792586516}, +{"learn":[2363.192483],"iteration":16,"passed_time":0.01340637092,"remaining_time":0.775203683}, +{"learn":[2309.161851],"iteration":17,"passed_time":0.01411464756,"remaining_time":0.7700324389}, +{"learn":[2251.326317],"iteration":18,"passed_time":0.01481760581,"remaining_time":0.765056384}, +{"learn":[2194.518603],"iteration":19,"passed_time":0.01549458959,"remaining_time":0.7592348901}, +{"learn":[2134.386896],"iteration":20,"passed_time":0.01644906333,"remaining_time":0.7668396665}, +{"learn":[2077.449324],"iteration":21,"passed_time":0.01732082338,"remaining_time":0.7699893301}, +{"learn":[2027.220285],"iteration":22,"passed_time":0.01816675104,"remaining_time":0.77169199}, +{"learn":[1984.605605],"iteration":23,"passed_time":0.01895777912,"remaining_time":0.7709496841}, +{"learn":[1931.101868],"iteration":24,"passed_time":0.01974026714,"remaining_time":0.7698704186}, +{"learn":[1893.116137],"iteration":25,"passed_time":0.02052408699,"remaining_time":0.7688638742}, +{"learn":[1842.931837],"iteration":26,"passed_time":0.0212543615,"remaining_time":0.7659442126}, +{"learn":[1795.250205],"iteration":27,"passed_time":0.02195648149,"remaining_time":0.7622035716}, +{"learn":[1751.063766],"iteration":28,"passed_time":0.02268154978,"remaining_time":0.7594408564}, +{"learn":[1712.884824],"iteration":29,"passed_time":0.02341985013,"remaining_time":0.7572418208}, +{"learn":[1667.80013],"iteration":30,"passed_time":0.02412037335,"remaining_time":0.7539561863}, +{"learn":[1630.782543],"iteration":31,"passed_time":0.0248340193,"remaining_time":0.7512290839}, +{"learn":[1590.474703],"iteration":32,"passed_time":0.02558644587,"remaining_time":0.7497603988}, +{"learn":[1551.389736],"iteration":33,"passed_time":0.02633511307,"remaining_time":0.7482270362}, +{"learn":[1516.435531],"iteration":34,"passed_time":0.02701407608,"remaining_time":0.744816669}, +{"learn":[1484.889881],"iteration":35,"passed_time":0.02773222138,"remaining_time":0.7426072615}, +{"learn":[1452.681436],"iteration":36,"passed_time":0.02922225711,"remaining_time":0.7605684755}, +{"learn":[1419.998505],"iteration":37,"passed_time":0.02993859448,"remaining_time":0.757919155}, +{"learn":[1389.412263],"iteration":38,"passed_time":0.03066495293,"remaining_time":0.7556158915}, +{"learn":[1363.812251],"iteration":39,"passed_time":0.03156180218,"remaining_time":0.7574832522}, +{"learn":[1340.371116],"iteration":40,"passed_time":0.03238396535,"remaining_time":0.7574688481}, +{"learn":[1309.517514],"iteration":41,"passed_time":0.03325333631,"remaining_time":0.7584927663}, +{"learn":[1275.195616],"iteration":42,"passed_time":0.03400256544,"remaining_time":0.7567547703}, +{"learn":[1246.278496],"iteration":43,"passed_time":0.03486340917,"remaining_time":0.7574867992}, +{"learn":[1218.451233],"iteration":44,"passed_time":0.03552797424,"remaining_time":0.7539825644}, +{"learn":[1198.54566],"iteration":45,"passed_time":0.03633034132,"remaining_time":0.7534596875}, +{"learn":[1176.814775],"iteration":46,"passed_time":0.03704876297,"remaining_time":0.7512227895}, +{"learn":[1153.401899],"iteration":47,"passed_time":0.03778597756,"remaining_time":0.7494218882}, +{"learn":[1129.163213],"iteration":48,"passed_time":0.03849158877,"remaining_time":0.7470510392}, +{"learn":[1106.535124],"iteration":49,"passed_time":0.03923882159,"remaining_time":0.7455376102}, +{"learn":[1080.936692],"iteration":50,"passed_time":0.03996599195,"remaining_time":0.7436809091}, +{"learn":[1064.986137],"iteration":51,"passed_time":0.0406713514,"remaining_time":0.7414700217}, +{"learn":[1045.057952],"iteration":52,"passed_time":0.0413358652,"remaining_time":0.7385861196}, +{"learn":[1025.324028],"iteration":53,"passed_time":0.04207274968,"remaining_time":0.7370522444}, +{"learn":[1006.478968],"iteration":54,"passed_time":0.04277837514,"remaining_time":0.7350102637}, +{"learn":[987.1865749],"iteration":55,"passed_time":0.04349747337,"remaining_time":0.7332431226}, +{"learn":[975.2369814],"iteration":56,"passed_time":0.04425939328,"remaining_time":0.7322211906}, +{"learn":[955.5744159],"iteration":57,"passed_time":0.04501491118,"remaining_time":0.731104247}, +{"learn":[941.1777923],"iteration":58,"passed_time":0.04572484441,"remaining_time":0.7292725184}, +{"learn":[926.5090454],"iteration":59,"passed_time":0.04642100466,"remaining_time":0.7272624064}, +{"learn":[912.6126438],"iteration":60,"passed_time":0.04741235387,"remaining_time":0.7298393489}, +{"learn":[895.292879],"iteration":61,"passed_time":0.04832959069,"remaining_time":0.7311799365}, +{"learn":[878.3101311],"iteration":62,"passed_time":0.04915864551,"remaining_time":0.731137315}, +{"learn":[862.0548494],"iteration":63,"passed_time":0.05011315735,"remaining_time":0.7329049262}, +{"learn":[846.6412955],"iteration":64,"passed_time":0.05082763765,"remaining_time":0.7311360185}, +{"learn":[831.7313933],"iteration":65,"passed_time":0.05158707659,"remaining_time":0.730035296}, +{"learn":[816.1886926],"iteration":66,"passed_time":0.05234155289,"remaining_time":0.7288756544}, +{"learn":[804.041348],"iteration":67,"passed_time":0.05307378596,"remaining_time":0.7274230664}, +{"learn":[790.9289148],"iteration":68,"passed_time":0.05382215012,"remaining_time":0.726209011}, +{"learn":[780.494202],"iteration":69,"passed_time":0.05456257497,"remaining_time":0.7249027818}, +{"learn":[765.6299333],"iteration":70,"passed_time":0.05531889018,"remaining_time":0.7238204082}, +{"learn":[754.0364757],"iteration":71,"passed_time":0.05601013516,"remaining_time":0.7219084087}, +{"learn":[742.6843646],"iteration":72,"passed_time":0.05670059136,"remaining_time":0.7200198383}, +{"learn":[733.6486191],"iteration":73,"passed_time":0.05758347356,"remaining_time":0.7205715745}, +{"learn":[724.4082592],"iteration":74,"passed_time":0.05829821346,"remaining_time":0.7190112993}, +{"learn":[714.3612708],"iteration":75,"passed_time":0.05902747165,"remaining_time":0.7176497869}, +{"learn":[703.7413048],"iteration":76,"passed_time":0.05976955167,"remaining_time":0.7164583921}, +{"learn":[692.6766437],"iteration":77,"passed_time":0.06045693899,"remaining_time":0.7146320224}, +{"learn":[682.658587],"iteration":78,"passed_time":0.06116548947,"remaining_time":0.7130812127}, +{"learn":[672.2667398],"iteration":79,"passed_time":0.06194553036,"remaining_time":0.7123735991}, +{"learn":[662.2697796],"iteration":80,"passed_time":0.06277600995,"remaining_time":0.7122364586}, +{"learn":[653.6006303],"iteration":81,"passed_time":0.06359903311,"remaining_time":0.7119989317}, +{"learn":[647.5304061],"iteration":82,"passed_time":0.06463637793,"remaining_time":0.7141151634}, +{"learn":[640.5592447],"iteration":83,"passed_time":0.06550222134,"remaining_time":0.7142861279}, +{"learn":[630.0335231],"iteration":84,"passed_time":0.06639667009,"remaining_time":0.7147406251}, +{"learn":[625.4874873],"iteration":85,"passed_time":0.0671161661,"remaining_time":0.7133043699}, +{"learn":[617.861395],"iteration":86,"passed_time":0.06785444828,"remaining_time":0.7120817389}, +{"learn":[611.4852683],"iteration":87,"passed_time":0.06854632605,"remaining_time":0.7103891972}, +{"learn":[604.7049078],"iteration":88,"passed_time":0.06928889464,"remaining_time":0.7092380114}, +{"learn":[599.1922856],"iteration":89,"passed_time":0.07000813995,"remaining_time":0.7078600817}, +{"learn":[591.5441643],"iteration":90,"passed_time":0.07070041228,"remaining_time":0.7062271952}, +{"learn":[585.3771005],"iteration":91,"passed_time":0.07143795733,"remaining_time":0.7050615789}, +{"learn":[579.0166045],"iteration":92,"passed_time":0.07212528945,"remaining_time":0.7034154573}, +{"learn":[571.6345746],"iteration":93,"passed_time":0.07284266914,"remaining_time":0.702079343}, +{"learn":[563.7088364],"iteration":94,"passed_time":0.07353363671,"remaining_time":0.7005046444}, +{"learn":[558.8177793],"iteration":95,"passed_time":0.0742609018,"remaining_time":0.6992901586}, +{"learn":[552.8642371],"iteration":96,"passed_time":0.07496849045,"remaining_time":0.6979025451}, +{"learn":[545.7509079],"iteration":97,"passed_time":0.07572013466,"remaining_time":0.6969343007}, +{"learn":[539.9432238],"iteration":98,"passed_time":0.07642319369,"remaining_time":0.6955282577}, +{"learn":[534.1401375],"iteration":99,"passed_time":0.07713626988,"remaining_time":0.6942264289}, +{"learn":[527.7113585],"iteration":100,"passed_time":0.07787193222,"remaining_time":0.6931372977}, +{"learn":[523.0913521],"iteration":101,"passed_time":0.08010386955,"remaining_time":0.7052281849}, +{"learn":[518.1808209],"iteration":102,"passed_time":0.08095907155,"remaining_time":0.7050513319}, +{"learn":[515.1524114],"iteration":103,"passed_time":0.0818226238,"remaining_time":0.7049333742}, +{"learn":[510.9040838],"iteration":104,"passed_time":0.08256788025,"remaining_time":0.703792884}, +{"learn":[507.4108072],"iteration":105,"passed_time":0.08334949084,"remaining_time":0.7029664604}, +{"learn":[503.8051705],"iteration":106,"passed_time":0.0841848882,"remaining_time":0.7025897679}, +{"learn":[499.9996939],"iteration":107,"passed_time":0.08489968899,"remaining_time":0.7012085424}, +{"learn":[494.3140036],"iteration":108,"passed_time":0.08562285641,"remaining_time":0.6999079364}, +{"learn":[490.6963987],"iteration":109,"passed_time":0.0863491351,"remaining_time":0.6986430021}, +{"learn":[486.4031605],"iteration":110,"passed_time":0.08703576819,"remaining_time":0.6970702515}, +{"learn":[482.2785595],"iteration":111,"passed_time":0.0877364278,"remaining_time":0.6956245347}, +{"learn":[479.8949034],"iteration":112,"passed_time":0.08842896436,"remaining_time":0.6941282423}, +{"learn":[477.481256],"iteration":113,"passed_time":0.08909897138,"remaining_time":0.692470953}, +{"learn":[473.4848601],"iteration":114,"passed_time":0.08993526648,"remaining_time":0.692110529}, +{"learn":[470.8859057],"iteration":115,"passed_time":0.09073123441,"remaining_time":0.6914345795}, +{"learn":[467.34591],"iteration":116,"passed_time":0.09148530154,"remaining_time":0.6904403527}, +{"learn":[461.7794319],"iteration":117,"passed_time":0.09219658974,"remaining_time":0.689130442}, +{"learn":[458.8907088],"iteration":118,"passed_time":0.09289395398,"remaining_time":0.687727508}, +{"learn":[455.6145374],"iteration":119,"passed_time":0.09375794067,"remaining_time":0.6875582316}, +{"learn":[452.7000667],"iteration":120,"passed_time":0.09461301127,"remaining_time":0.6873127017}, +{"learn":[449.6290258],"iteration":121,"passed_time":0.09550207113,"remaining_time":0.6873017906}, +{"learn":[446.554963],"iteration":122,"passed_time":0.09645355147,"remaining_time":0.6877216637}, +{"learn":[444.1306578],"iteration":123,"passed_time":0.09718133433,"remaining_time":0.6865391038}, +{"learn":[442.339996],"iteration":124,"passed_time":0.09790930877,"remaining_time":0.6853651614}, +{"learn":[438.6627661],"iteration":125,"passed_time":0.09861097045,"remaining_time":0.6840157792}, +{"learn":[436.8974745],"iteration":126,"passed_time":0.09926481186,"remaining_time":0.6823478799}, +{"learn":[435.2446235],"iteration":127,"passed_time":0.09996990281,"remaining_time":0.6810449629}, +{"learn":[433.1007063],"iteration":128,"passed_time":0.1013340916,"remaining_time":0.6842015021}, +{"learn":[428.7936747],"iteration":129,"passed_time":0.1021133013,"remaining_time":0.683373632}, +{"learn":[425.4447815],"iteration":130,"passed_time":0.1028054622,"remaining_time":0.6819690584}, +{"learn":[422.4564141],"iteration":131,"passed_time":0.1035430461,"remaining_time":0.6808739696}, +{"learn":[420.3704177],"iteration":132,"passed_time":0.1042900125,"remaining_time":0.67984542}, +{"learn":[418.3308567],"iteration":133,"passed_time":0.1050084156,"remaining_time":0.6786364772}, +{"learn":[416.355286],"iteration":134,"passed_time":0.1057192836,"remaining_time":0.6773865211}, +{"learn":[413.2683151],"iteration":135,"passed_time":0.1064474661,"remaining_time":0.6762544902}, +{"learn":[409.2783872],"iteration":136,"passed_time":0.1071312215,"remaining_time":0.6748484974}, +{"learn":[407.2469786],"iteration":137,"passed_time":0.1078246622,"remaining_time":0.6735134696}, +{"learn":[404.9461056],"iteration":138,"passed_time":0.1087250237,"remaining_time":0.6734693912}, +{"learn":[402.902743],"iteration":139,"passed_time":0.1095788689,"remaining_time":0.6731273376}, +{"learn":[401.1939857],"iteration":140,"passed_time":0.1104375853,"remaining_time":0.6728077005}, +{"learn":[399.2151519],"iteration":141,"passed_time":0.1113094682,"remaining_time":0.6725600261}, +{"learn":[396.7982124],"iteration":142,"passed_time":0.1121055707,"remaining_time":0.6718494693}, +{"learn":[395.1551058],"iteration":143,"passed_time":0.1130211107,"remaining_time":0.6718477137}, +{"learn":[393.8379304],"iteration":144,"passed_time":0.1139175889,"remaining_time":0.6717209552}, +{"learn":[392.1757867],"iteration":145,"passed_time":0.115114552,"remaining_time":0.6733412836}, +{"learn":[390.0361905],"iteration":146,"passed_time":0.1158802594,"remaining_time":0.672420825}, +{"learn":[387.759463],"iteration":147,"passed_time":0.1168136102,"remaining_time":0.6724675399}, +{"learn":[385.5603947],"iteration":148,"passed_time":0.1176591074,"remaining_time":0.6719993313}, +{"learn":[383.4831287],"iteration":149,"passed_time":0.1184101035,"remaining_time":0.6709905863}, +{"learn":[380.7027889],"iteration":150,"passed_time":0.1191952897,"remaining_time":0.6701774896}, +{"learn":[379.1509263],"iteration":151,"passed_time":0.1199109166,"remaining_time":0.6689766927}, +{"learn":[377.5054091],"iteration":152,"passed_time":0.1206430913,"remaining_time":0.6678738453}, +{"learn":[376.3544887],"iteration":153,"passed_time":0.1213932363,"remaining_time":0.666874532}, +{"learn":[374.7216306],"iteration":154,"passed_time":0.122091681,"remaining_time":0.6655965834}, +{"learn":[371.8227673],"iteration":155,"passed_time":0.1228154776,"remaining_time":0.6644632251}, +{"learn":[368.8293011],"iteration":156,"passed_time":0.1234830268,"remaining_time":0.6630330677}, +{"learn":[367.3554223],"iteration":157,"passed_time":0.124250894,"remaining_time":0.6621471693}, +{"learn":[365.6957606],"iteration":158,"passed_time":0.125082188,"remaining_time":0.6615982397}, +{"learn":[363.4291725],"iteration":159,"passed_time":0.1259223265,"remaining_time":0.6610922142}, +{"learn":[362.1293855],"iteration":160,"passed_time":0.1267673646,"remaining_time":0.660607571}, +{"learn":[359.8814575],"iteration":161,"passed_time":0.1275243835,"remaining_time":0.659663169}, +{"learn":[357.4070103],"iteration":162,"passed_time":0.1282479928,"remaining_time":0.6585495093}, +{"learn":[355.2431096],"iteration":163,"passed_time":0.128942859,"remaining_time":0.6572940863}, +{"learn":[352.552065],"iteration":164,"passed_time":0.1297510463,"remaining_time":0.656618931}, +{"learn":[349.7138766],"iteration":165,"passed_time":0.1305558509,"remaining_time":0.6559251784}, +{"learn":[347.4891863],"iteration":166,"passed_time":0.1312337274,"remaining_time":0.6545969756}, +{"learn":[345.5489662],"iteration":167,"passed_time":0.1318980215,"remaining_time":0.6532092492}, +{"learn":[341.5699121],"iteration":168,"passed_time":0.1326245384,"remaining_time":0.6521360438}, +{"learn":[338.2907206],"iteration":169,"passed_time":0.1333184203,"remaining_time":0.6509075815}, +{"learn":[336.0732474],"iteration":170,"passed_time":0.1339855967,"remaining_time":0.6495559043}, +{"learn":[334.6253265],"iteration":171,"passed_time":0.1346695971,"remaining_time":0.6482931767}, +{"learn":[333.6199762],"iteration":172,"passed_time":0.1353404776,"remaining_time":0.646974422}, +{"learn":[331.927306],"iteration":173,"passed_time":0.1360180216,"remaining_time":0.6456947461}, +{"learn":[330.7664346],"iteration":174,"passed_time":0.1367687727,"remaining_time":0.6447670713}, +{"learn":[327.600505],"iteration":175,"passed_time":0.1374761968,"remaining_time":0.6436385578}, +{"learn":[325.6325653],"iteration":176,"passed_time":0.13820997,"remaining_time":0.6426373183}, +{"learn":[324.3582431],"iteration":177,"passed_time":0.138919102,"remaining_time":0.6415252914}, +{"learn":[323.0986648],"iteration":178,"passed_time":0.1398843165,"remaining_time":0.6415923121}, +{"learn":[321.3015869],"iteration":179,"passed_time":0.140964175,"remaining_time":0.6421701305}, +{"learn":[319.9619277],"iteration":180,"passed_time":0.1418238739,"remaining_time":0.6417334402}, +{"learn":[318.5357961],"iteration":181,"passed_time":0.1426653755,"remaining_time":0.6412103142}, +{"learn":[317.3093454],"iteration":182,"passed_time":0.1433921634,"remaining_time":0.6401715712}, +{"learn":[315.6279442],"iteration":183,"passed_time":0.1442559361,"remaining_time":0.6397437166}, +{"learn":[313.5985253],"iteration":184,"passed_time":0.1449686149,"remaining_time":0.6386455196}, +{"learn":[312.2128824],"iteration":185,"passed_time":0.1456340086,"remaining_time":0.6373445323}, +{"learn":[310.5408064],"iteration":186,"passed_time":0.1463235927,"remaining_time":0.6361555127}, +{"learn":[308.8097527],"iteration":187,"passed_time":0.1469707465,"remaining_time":0.6347885435}, +{"learn":[307.444303],"iteration":188,"passed_time":0.1476244587,"remaining_time":0.6334573332}, +{"learn":[305.5703591],"iteration":189,"passed_time":0.1483259601,"remaining_time":0.6323369878}, +{"learn":[304.1410151],"iteration":190,"passed_time":0.1498676659,"remaining_time":0.6347797996}, +{"learn":[302.5345375],"iteration":191,"passed_time":0.150515814,"remaining_time":0.6334207171}, +{"learn":[301.645134],"iteration":192,"passed_time":0.1511993393,"remaining_time":0.6322169267}, +{"learn":[300.4121176],"iteration":193,"passed_time":0.1518983587,"remaining_time":0.6310828719}, +{"learn":[298.5525362],"iteration":194,"passed_time":0.1525351389,"remaining_time":0.6296963427}, +{"learn":[296.9420221],"iteration":195,"passed_time":0.1532716157,"remaining_time":0.6287264235}, +{"learn":[295.9578764],"iteration":196,"passed_time":0.1540105047,"remaining_time":0.6277687068}, +{"learn":[295.0625029],"iteration":197,"passed_time":0.1548134778,"remaining_time":0.6270727738}, +{"learn":[294.1030487],"iteration":198,"passed_time":0.1555906158,"remaining_time":0.626271775}, +{"learn":[293.6409424],"iteration":199,"passed_time":0.1561267846,"remaining_time":0.6245071382}, +{"learn":[292.418178],"iteration":200,"passed_time":0.1571125661,"remaining_time":0.6245419916}, +{"learn":[290.7077158],"iteration":201,"passed_time":0.1583754466,"remaining_time":0.6256614177}, +{"learn":[289.7255389],"iteration":202,"passed_time":0.1590543633,"remaining_time":0.6244646678}, +{"learn":[288.2508488],"iteration":203,"passed_time":0.1598003373,"remaining_time":0.6235346495}, +{"learn":[286.7868578],"iteration":204,"passed_time":0.1605520332,"remaining_time":0.6226286164}, +{"learn":[286.086537],"iteration":205,"passed_time":0.161274874,"remaining_time":0.621612864}, +{"learn":[285.2264005],"iteration":206,"passed_time":0.1619637449,"remaining_time":0.6204698052}, +{"learn":[284.0864334],"iteration":207,"passed_time":0.1626876804,"remaining_time":0.6194646292}, +{"learn":[282.8510716],"iteration":208,"passed_time":0.1634216694,"remaining_time":0.6185001938}, +{"learn":[282.0865003],"iteration":209,"passed_time":0.1641738645,"remaining_time":0.6176064427}, +{"learn":[281.1298771],"iteration":210,"passed_time":0.164925862,"remaining_time":0.6167132943}, +{"learn":[280.1903001],"iteration":211,"passed_time":0.1655857375,"remaining_time":0.6154790622}, +{"learn":[279.0970471],"iteration":212,"passed_time":0.1663062143,"remaining_time":0.6144741344}, +{"learn":[277.9367672],"iteration":213,"passed_time":0.1669812131,"remaining_time":0.6133048295}, +{"learn":[276.7751341],"iteration":214,"passed_time":0.167689421,"remaining_time":0.6122613745}, +{"learn":[275.9816879],"iteration":215,"passed_time":0.1683824116,"remaining_time":0.6111657903}, +{"learn":[275.0941078],"iteration":216,"passed_time":0.1691116563,"remaining_time":0.6102047321}, +{"learn":[274.0984843],"iteration":217,"passed_time":0.1697642068,"remaining_time":0.6089706868}, +{"learn":[273.783232],"iteration":218,"passed_time":0.1705968027,"remaining_time":0.6083840316}, +{"learn":[272.2569337],"iteration":219,"passed_time":0.1714172741,"remaining_time":0.6077521535}, +{"learn":[271.4275366],"iteration":220,"passed_time":0.1721732884,"remaining_time":0.6068913649}, +{"learn":[268.932575],"iteration":221,"passed_time":0.1731690055,"remaining_time":0.6068715599}, +{"learn":[267.6229378],"iteration":222,"passed_time":0.1739672201,"remaining_time":0.6061548431}, +{"learn":[266.5785284],"iteration":223,"passed_time":0.1746886305,"remaining_time":0.6051713271}, +{"learn":[265.398546],"iteration":224,"passed_time":0.1754056733,"remaining_time":0.604175097}, +{"learn":[263.8963923],"iteration":225,"passed_time":0.1761441122,"remaining_time":0.6032546143}, +{"learn":[262.8240575],"iteration":226,"passed_time":0.1769197762,"remaining_time":0.6024624979}, +{"learn":[261.7816442],"iteration":227,"passed_time":0.1776571386,"remaining_time":0.6015408377}, +{"learn":[260.8591568],"iteration":228,"passed_time":0.1785285287,"remaining_time":0.6010720332}, +{"learn":[259.7074649],"iteration":229,"passed_time":0.1794276513,"remaining_time":0.6006925716}, +{"learn":[258.3753881],"iteration":230,"passed_time":0.1803341217,"remaining_time":0.6003330717}, +{"learn":[257.5815782],"iteration":231,"passed_time":0.181110155,"remaining_time":0.5995370648}, +{"learn":[256.6962939],"iteration":232,"passed_time":0.1819193703,"remaining_time":0.5988504592}, +{"learn":[255.5210063],"iteration":233,"passed_time":0.1826910584,"remaining_time":0.5980399605}, +{"learn":[254.8841884],"iteration":234,"passed_time":0.1835126522,"remaining_time":0.5973922508}, +{"learn":[254.0187639],"iteration":235,"passed_time":0.1843096525,"remaining_time":0.5966634512}, +{"learn":[252.9263803],"iteration":236,"passed_time":0.185212695,"remaining_time":0.5962754697}, +{"learn":[251.9325468],"iteration":237,"passed_time":0.1861036369,"remaining_time":0.5958444173}, +{"learn":[250.643096],"iteration":238,"passed_time":0.1870425472,"remaining_time":0.5955622527}, +{"learn":[249.6721803],"iteration":239,"passed_time":0.187933285,"remaining_time":0.5951220691}, +{"learn":[248.7723228],"iteration":240,"passed_time":0.1887522215,"remaining_time":0.5944520172}, +{"learn":[248.0043812],"iteration":241,"passed_time":0.1896254224,"remaining_time":0.5939507031}, +{"learn":[247.3321548],"iteration":242,"passed_time":0.1904597995,"remaining_time":0.5933253836}, +{"learn":[246.7967875],"iteration":243,"passed_time":0.1912322949,"remaining_time":0.5925066187}, +{"learn":[246.0910573],"iteration":244,"passed_time":0.1919510759,"remaining_time":0.5915227032}, +{"learn":[243.8962219],"iteration":245,"passed_time":0.1929246549,"remaining_time":0.5913219096}, +{"learn":[242.8598926],"iteration":246,"passed_time":0.1937343441,"remaining_time":0.5906152272}, +{"learn":[242.4047449],"iteration":247,"passed_time":0.1945199837,"remaining_time":0.5898347892}, +{"learn":[241.8658878],"iteration":248,"passed_time":0.1953305322,"remaining_time":0.5891294365}, +{"learn":[241.2068841],"iteration":249,"passed_time":0.1961082018,"remaining_time":0.5883246054}, +{"learn":[240.3944328],"iteration":250,"passed_time":0.1970050218,"remaining_time":0.5878755433}, +{"learn":[239.8042636],"iteration":251,"passed_time":0.1977707763,"remaining_time":0.5870338914}, +{"learn":[239.2380851],"iteration":252,"passed_time":0.198508332,"remaining_time":0.586109581}, +{"learn":[238.7913906],"iteration":253,"passed_time":0.1992780534,"remaining_time":0.5852812119}, +{"learn":[237.7871852],"iteration":254,"passed_time":0.2001830495,"remaining_time":0.5848485173}, +{"learn":[237.4230529],"iteration":255,"passed_time":0.2014230334,"remaining_time":0.5853856907}, +{"learn":[236.9503851],"iteration":256,"passed_time":0.2024117442,"remaining_time":0.5851825912}, +{"learn":[236.5353735],"iteration":257,"passed_time":0.203289636,"remaining_time":0.5846546896}, +{"learn":[236.0385457],"iteration":258,"passed_time":0.2043241206,"remaining_time":0.5845720979}, +{"learn":[235.1681646],"iteration":259,"passed_time":0.2050800245,"remaining_time":0.5836893005}, +{"learn":[233.9263754],"iteration":260,"passed_time":0.2058911784,"remaining_time":0.5829639113}, +{"learn":[233.4651113],"iteration":261,"passed_time":0.2066417155,"remaining_time":0.5820671223}, +{"learn":[232.8769228],"iteration":262,"passed_time":0.207408686,"remaining_time":0.5812174966}, +{"learn":[232.3156672],"iteration":263,"passed_time":0.2081722358,"remaining_time":0.5803589604}, +{"learn":[231.9137269],"iteration":264,"passed_time":0.2089940995,"remaining_time":0.5796628797}, +{"learn":[231.4086531],"iteration":265,"passed_time":0.2098098592,"remaining_time":0.5789490101}, +{"learn":[230.7801018],"iteration":266,"passed_time":0.2105362878,"remaining_time":0.5779891348}, +{"learn":[230.3125671],"iteration":267,"passed_time":0.2113451217,"remaining_time":0.5772560788}, +{"learn":[229.8171138],"iteration":268,"passed_time":0.2121952372,"remaining_time":0.5766346408}, +{"learn":[228.9896699],"iteration":269,"passed_time":0.2129847411,"remaining_time":0.5758476334}, +{"learn":[228.1907234],"iteration":270,"passed_time":0.2138539152,"remaining_time":0.5752749231}, +{"learn":[227.5037554],"iteration":271,"passed_time":0.214660443,"remaining_time":0.574532362}, +{"learn":[227.0812216],"iteration":272,"passed_time":0.2154085642,"remaining_time":0.5736337956}, +{"learn":[226.531358],"iteration":273,"passed_time":0.2161630274,"remaining_time":0.5727531309}, +{"learn":[225.9401478],"iteration":274,"passed_time":0.2173153224,"remaining_time":0.5729222136}, +{"learn":[225.5392312],"iteration":275,"passed_time":0.2183920375,"remaining_time":0.5728834608}, +{"learn":[224.4404722],"iteration":276,"passed_time":0.2195621124,"remaining_time":0.5730808927}, +{"learn":[222.9875036],"iteration":277,"passed_time":0.2206099298,"remaining_time":0.5729509689}, +{"learn":[222.0576336],"iteration":278,"passed_time":0.2220810074,"remaining_time":0.5739082664}, +{"learn":[221.4001301],"iteration":279,"passed_time":0.2228432026,"remaining_time":0.573025378}, +{"learn":[220.6016936],"iteration":280,"passed_time":0.2235654448,"remaining_time":0.5720411204}, +{"learn":[220.0410548],"iteration":281,"passed_time":0.2242912506,"remaining_time":0.5710677941}, +{"learn":[219.6337237],"iteration":282,"passed_time":0.2250029287,"remaining_time":0.5700604237}, +{"learn":[219.3044009],"iteration":283,"passed_time":0.2257394625,"remaining_time":0.5691177997}, +{"learn":[218.776607],"iteration":284,"passed_time":0.226414503,"remaining_time":0.5680223496}, +{"learn":[217.8416864],"iteration":285,"passed_time":0.2270884581,"remaining_time":0.5669271297}, +{"learn":[217.4529483],"iteration":286,"passed_time":0.227759198,"remaining_time":0.5658268578}, +{"learn":[217.0905909],"iteration":287,"passed_time":0.2284721528,"remaining_time":0.5648339332}, +{"learn":[216.0690431],"iteration":288,"passed_time":0.2292173387,"remaining_time":0.5639222416}, +{"learn":[215.7059666],"iteration":289,"passed_time":0.2299477881,"remaining_time":0.5629756191}, +{"learn":[215.2980626],"iteration":290,"passed_time":0.2306771118,"remaining_time":0.5620277397}, +{"learn":[214.6205749],"iteration":291,"passed_time":0.2313760475,"remaining_time":0.5610076768}, +{"learn":[214.3146893],"iteration":292,"passed_time":0.23417155,"remaining_time":0.5650487572}, +{"learn":[213.4974494],"iteration":293,"passed_time":0.2349282633,"remaining_time":0.5641474623}, +{"learn":[213.0350907],"iteration":294,"passed_time":0.2356636625,"remaining_time":0.5631962104}, +{"learn":[212.6353058],"iteration":295,"passed_time":0.2363248571,"remaining_time":0.5620699304}, +{"learn":[211.3935718],"iteration":296,"passed_time":0.2370575987,"remaining_time":0.5611161342}, +{"learn":[210.420639],"iteration":297,"passed_time":0.2378018762,"remaining_time":0.5601909969}, +{"learn":[209.6471807],"iteration":298,"passed_time":0.2385106368,"remaining_time":0.5591838006}, +{"learn":[209.321792],"iteration":299,"passed_time":0.2391724057,"remaining_time":0.5580689467}, +{"learn":[208.5385184],"iteration":300,"passed_time":0.2398697443,"remaining_time":0.5570397053}, +{"learn":[207.4529122],"iteration":301,"passed_time":0.2405938982,"remaining_time":0.5560746388}, +{"learn":[207.1634334],"iteration":302,"passed_time":0.2412924308,"remaining_time":0.5550522252}, +{"learn":[206.7215229],"iteration":303,"passed_time":0.2419842067,"remaining_time":0.5540164732}, +{"learn":[205.8254902],"iteration":304,"passed_time":0.2426827717,"remaining_time":0.552998447}, +{"learn":[204.9402971],"iteration":305,"passed_time":0.2435071858,"remaining_time":0.5522679312}, +{"learn":[204.2401925],"iteration":306,"passed_time":0.2442052594,"remaining_time":0.5512516116}, +{"learn":[203.830478],"iteration":307,"passed_time":0.2448946501,"remaining_time":0.5502178503}, +{"learn":[203.4878609],"iteration":308,"passed_time":0.2456328511,"remaining_time":0.5492954697}, +{"learn":[202.7358657],"iteration":309,"passed_time":0.2463957044,"remaining_time":0.5484291485}, +{"learn":[201.6776776],"iteration":310,"passed_time":0.2471161637,"remaining_time":0.5474695716}, +{"learn":[201.2502754],"iteration":311,"passed_time":0.2480671964,"remaining_time":0.5470199715}, +{"learn":[200.4058849],"iteration":312,"passed_time":0.248785112,"remaining_time":0.5460555014}, +{"learn":[200.0863728],"iteration":313,"passed_time":0.2495481778,"remaining_time":0.545191242}, +{"learn":[199.4424797],"iteration":314,"passed_time":0.2504540849,"remaining_time":0.5446382481}, +{"learn":[198.434697],"iteration":315,"passed_time":0.2512015403,"remaining_time":0.5437400429}, +{"learn":[197.6092453],"iteration":316,"passed_time":0.2519345938,"remaining_time":0.5428117589}, +{"learn":[197.4347459],"iteration":317,"passed_time":0.2522956799,"remaining_time":0.5410869612}, +{"learn":[197.1730434],"iteration":318,"passed_time":0.2530093233,"remaining_time":0.5401233517}, +{"learn":[196.3205483],"iteration":319,"passed_time":0.2537239044,"remaining_time":0.5391632969}, +{"learn":[196.1442192],"iteration":320,"passed_time":0.2544253026,"remaining_time":0.5381768861}, +{"learn":[195.1358489],"iteration":321,"passed_time":0.2551259045,"remaining_time":0.5371905691}, +{"learn":[194.7654394],"iteration":322,"passed_time":0.2557806094,"remaining_time":0.5361098223}, +{"learn":[194.5257029],"iteration":323,"passed_time":0.2564364386,"remaining_time":0.5350340509}, +{"learn":[194.3460045],"iteration":324,"passed_time":0.2571010115,"remaining_time":0.5339790239}, +{"learn":[193.5423137],"iteration":325,"passed_time":0.2577692722,"remaining_time":0.5329340168}, +{"learn":[193.361594],"iteration":326,"passed_time":0.2584108092,"remaining_time":0.5318363138}, +{"learn":[192.8609113],"iteration":327,"passed_time":0.2591080869,"remaining_time":0.5308555927}, +{"learn":[192.0152368],"iteration":328,"passed_time":0.259827105,"remaining_time":0.5299209346}, +{"learn":[191.2984363],"iteration":329,"passed_time":0.2605309884,"remaining_time":0.5289568553}, +{"learn":[190.7528647],"iteration":330,"passed_time":0.2612934215,"remaining_time":0.5281126857}, +{"learn":[190.0073779],"iteration":331,"passed_time":0.2620074777,"remaining_time":0.5271716719}, +{"learn":[189.1785006],"iteration":332,"passed_time":0.2626834993,"remaining_time":0.5261558379}, +{"learn":[188.5504856],"iteration":333,"passed_time":0.2649155206,"remaining_time":0.5282447208}, +{"learn":[188.0987857],"iteration":334,"passed_time":0.265882104,"remaining_time":0.5277958184}, +{"learn":[187.3100528],"iteration":335,"passed_time":0.266580835,"remaining_time":0.5268145072}, +{"learn":[187.0695173],"iteration":336,"passed_time":0.2673128519,"remaining_time":0.5259003584}, +{"learn":[186.3384284],"iteration":337,"passed_time":0.2681301671,"remaining_time":0.5251543509}, +{"learn":[185.8397918],"iteration":338,"passed_time":0.268867105,"remaining_time":0.5242511988}, +{"learn":[185.5281498],"iteration":339,"passed_time":0.2694914785,"remaining_time":0.5231305172}, +{"learn":[185.0772929],"iteration":340,"passed_time":0.2702359925,"remaining_time":0.522244924}, +{"learn":[184.3896485],"iteration":341,"passed_time":0.2709851814,"remaining_time":0.5213691502}, +{"learn":[183.9436706],"iteration":342,"passed_time":0.2716560669,"remaining_time":0.5203441282}, +{"learn":[182.943391],"iteration":343,"passed_time":0.2723687927,"remaining_time":0.5194009536}, +{"learn":[182.1191152],"iteration":344,"passed_time":0.2730501676,"remaining_time":0.5183995936}, +{"learn":[181.9430507],"iteration":345,"passed_time":0.2737274762,"remaining_time":0.5173923971}, +{"learn":[181.2225343],"iteration":346,"passed_time":0.2744020669,"remaining_time":0.5163819876}, +{"learn":[180.7098556],"iteration":347,"passed_time":0.2750624311,"remaining_time":0.5153468536}, +{"learn":[180.1134451],"iteration":348,"passed_time":0.2757285085,"remaining_time":0.5143245245}, +{"learn":[179.9030133],"iteration":349,"passed_time":0.2764445126,"remaining_time":0.5133969519}, +{"learn":[179.5222111],"iteration":350,"passed_time":0.2771355895,"remaining_time":0.5124244945}, +{"learn":[178.6909028],"iteration":351,"passed_time":0.2781819337,"remaining_time":0.5121076507}, +{"learn":[178.3826558],"iteration":352,"passed_time":0.2790138174,"remaining_time":0.5113935973}, +{"learn":[178.0647718],"iteration":353,"passed_time":0.2797921853,"remaining_time":0.5105812195}, +{"learn":[177.0587936],"iteration":354,"passed_time":0.2809552339,"remaining_time":0.5104679602}, +{"learn":[176.7722999],"iteration":355,"passed_time":0.2816649649,"remaining_time":0.5095287567}, +{"learn":[176.4841216],"iteration":356,"passed_time":0.2823865309,"remaining_time":0.5086121551}, +{"learn":[176.0194343],"iteration":357,"passed_time":0.2831539227,"remaining_time":0.5077788223}, +{"learn":[175.7636755],"iteration":358,"passed_time":0.2839027184,"remaining_time":0.5069126533}, +{"learn":[175.0494995],"iteration":359,"passed_time":0.2846329524,"remaining_time":0.5060141375}, +{"learn":[174.8436133],"iteration":360,"passed_time":0.285326012,"remaining_time":0.5050507526}, +{"learn":[174.5320971],"iteration":361,"passed_time":0.2860244795,"remaining_time":0.504098392}, +{"learn":[173.8910897],"iteration":362,"passed_time":0.2866973695,"remaining_time":0.5031025465}, +{"learn":[173.2930522],"iteration":363,"passed_time":0.2874082129,"remaining_time":0.5021747896}, +{"learn":[172.7834317],"iteration":364,"passed_time":0.2881249894,"remaining_time":0.5012585432}, +{"learn":[172.5451464],"iteration":365,"passed_time":0.2888148206,"remaining_time":0.5002967112}, +{"learn":[172.2138011],"iteration":366,"passed_time":0.2894541694,"remaining_time":0.4992492894}, +{"learn":[171.2132824],"iteration":367,"passed_time":0.2901284169,"remaining_time":0.4982640203}, +{"learn":[171.050042],"iteration":368,"passed_time":0.2908197341,"remaining_time":0.4973096267}, +{"learn":[170.643188],"iteration":369,"passed_time":0.2915489378,"remaining_time":0.4964211644}, +{"learn":[170.2444386],"iteration":370,"passed_time":0.2922851539,"remaining_time":0.4955454497}, +{"learn":[169.6615289],"iteration":371,"passed_time":0.292994688,"remaining_time":0.494625441}, +{"learn":[169.2398256],"iteration":372,"passed_time":0.2936843023,"remaining_time":0.4936730766}, +{"learn":[169.1089687],"iteration":373,"passed_time":0.2964977581,"remaining_time":0.4962769962}, +{"learn":[168.3913973],"iteration":374,"passed_time":0.2972895888,"remaining_time":0.4954826481}, +{"learn":[168.0109707],"iteration":375,"passed_time":0.2979909083,"remaining_time":0.4945381031}, +{"learn":[167.6623955],"iteration":376,"passed_time":0.2989716806,"remaining_time":0.4940566498}, +{"learn":[167.4718941],"iteration":377,"passed_time":0.2997289156,"remaining_time":0.4932047235}, +{"learn":[167.1617279],"iteration":378,"passed_time":0.3004271163,"remaining_time":0.4922565679}, +{"learn":[166.8382257],"iteration":379,"passed_time":0.3011389988,"remaining_time":0.4913320507}, +{"learn":[166.5470885],"iteration":380,"passed_time":0.3019178179,"remaining_time":0.4905173998}, +{"learn":[165.9805333],"iteration":381,"passed_time":0.302612932,"remaining_time":0.4895675182}, +{"learn":[165.8072213],"iteration":382,"passed_time":0.3033300382,"remaining_time":0.4886543957}, +{"learn":[165.2007912],"iteration":383,"passed_time":0.3040284921,"remaining_time":0.4877123727}, +{"learn":[164.7921382],"iteration":384,"passed_time":0.3046742614,"remaining_time":0.4866874564}, +{"learn":[164.5110541],"iteration":385,"passed_time":0.3053264024,"remaining_time":0.48567464}, +{"learn":[163.8643792],"iteration":386,"passed_time":0.3061135126,"remaining_time":0.484877476}, +{"learn":[163.164661],"iteration":387,"passed_time":0.3068363396,"remaining_time":0.4839789686}, +{"learn":[162.7088389],"iteration":388,"passed_time":0.3075190235,"remaining_time":0.483018312}, +{"learn":[162.0327601],"iteration":389,"passed_time":0.3082005155,"remaining_time":0.4820572166}, +{"learn":[161.7854959],"iteration":390,"passed_time":0.3094010582,"remaining_time":0.481905996}, +{"learn":[161.3755056],"iteration":391,"passed_time":0.3102488967,"remaining_time":0.4812023704}, +{"learn":[160.7323132],"iteration":392,"passed_time":0.3114061661,"remaining_time":0.480975936}, +{"learn":[160.6155798],"iteration":393,"passed_time":0.3120978922,"remaining_time":0.4800287377}, +{"learn":[160.3386438],"iteration":394,"passed_time":0.3128182977,"remaining_time":0.4791267597}, +{"learn":[159.8353012],"iteration":395,"passed_time":0.3135830746,"remaining_time":0.4782933764}, +{"learn":[159.1391019],"iteration":396,"passed_time":0.3142885811,"remaining_time":0.4773703134}, +{"learn":[158.4855614],"iteration":397,"passed_time":0.3151278956,"remaining_time":0.4766507366}, +{"learn":[158.0854374],"iteration":398,"passed_time":0.3158325824,"remaining_time":0.4757277744}, +{"learn":[157.8456813],"iteration":399,"passed_time":0.3165535651,"remaining_time":0.4748303477}, +{"learn":[157.4880514],"iteration":400,"passed_time":0.3172745179,"remaining_time":0.4739337562}, +{"learn":[156.9881906],"iteration":401,"passed_time":0.317999583,"remaining_time":0.4730441558}, +{"learn":[156.5677653],"iteration":402,"passed_time":0.31869001,"remaining_time":0.4721040595}, +{"learn":[156.3574827],"iteration":403,"passed_time":0.3194012099,"remaining_time":0.4711958443}, +{"learn":[156.2451016],"iteration":404,"passed_time":0.3200784444,"remaining_time":0.4702387022}, +{"learn":[155.9302814],"iteration":405,"passed_time":0.3208048281,"remaining_time":0.469354847}, +{"learn":[155.3032846],"iteration":406,"passed_time":0.3214914591,"remaining_time":0.4684138458}, +{"learn":[154.4769299],"iteration":407,"passed_time":0.3222114867,"remaining_time":0.4675225494}, +{"learn":[154.2897312],"iteration":408,"passed_time":0.3228884474,"remaining_time":0.4665698592}, +{"learn":[154.1934428],"iteration":409,"passed_time":0.3235838338,"remaining_time":0.4656450292}, +{"learn":[153.5724007],"iteration":410,"passed_time":0.3243219301,"remaining_time":0.4647825227}, +{"learn":[153.0736612],"iteration":411,"passed_time":0.3254188997,"remaining_time":0.4644327985}, +{"learn":[152.9564476],"iteration":412,"passed_time":0.3261923434,"remaining_time":0.4636196261}, +{"learn":[152.3993793],"iteration":413,"passed_time":0.3270152063,"remaining_time":0.4628765964}, +{"learn":[151.7975618],"iteration":414,"passed_time":0.3279057041,"remaining_time":0.4622285227}, +{"learn":[151.2709445],"iteration":415,"passed_time":0.3286975612,"remaining_time":0.4614408071}, +{"learn":[150.9104339],"iteration":416,"passed_time":0.3293475474,"remaining_time":0.4604547246}, +{"learn":[150.3215665],"iteration":417,"passed_time":0.3300545709,"remaining_time":0.4595496658}, +{"learn":[149.8387959],"iteration":418,"passed_time":0.33077865,"remaining_time":0.458669202}, +{"learn":[149.54926],"iteration":419,"passed_time":0.3314492353,"remaining_time":0.4577156107}, +{"learn":[149.1502195],"iteration":420,"passed_time":0.3321662222,"remaining_time":0.4568271797}, +{"learn":[148.9274928],"iteration":421,"passed_time":0.3328315807,"remaining_time":0.4558688475}, +{"learn":[148.6005806],"iteration":422,"passed_time":0.333523222,"remaining_time":0.454947752}, +{"learn":[148.2908845],"iteration":423,"passed_time":0.3342240753,"remaining_time":0.4540402533}, +{"learn":[147.9269959],"iteration":424,"passed_time":0.3349316394,"remaining_time":0.4531428063}, +{"learn":[147.4632561],"iteration":425,"passed_time":0.3356489336,"remaining_time":0.4522593613}, +{"learn":[146.8663669],"iteration":426,"passed_time":0.3363175341,"remaining_time":0.4513113513}, +{"learn":[146.5109632],"iteration":427,"passed_time":0.3370133065,"remaining_time":0.4504009611}, +{"learn":[146.1289295],"iteration":428,"passed_time":0.3376868233,"remaining_time":0.449461949}, +{"learn":[145.7040286],"iteration":429,"passed_time":0.3383919288,"remaining_time":0.4485660452}, +{"learn":[145.2840842],"iteration":430,"passed_time":0.3390635889,"remaining_time":0.4476268726}, +{"learn":[145.0408079],"iteration":431,"passed_time":0.3398307724,"remaining_time":0.446814534}, +{"learn":[144.7811929],"iteration":432,"passed_time":0.3406539426,"remaining_time":0.446075717}, +{"learn":[144.3322422],"iteration":433,"passed_time":0.3414858573,"remaining_time":0.4453479152}, +{"learn":[144.2214218],"iteration":434,"passed_time":0.3423766474,"remaining_time":0.4446961053}, +{"learn":[143.9688619],"iteration":435,"passed_time":0.343363285,"remaining_time":0.4441671852}, +{"learn":[143.6083057],"iteration":436,"passed_time":0.3441564846,"remaining_time":0.4433869585}, +{"learn":[143.2156197],"iteration":437,"passed_time":0.3448755302,"remaining_time":0.442511525}, +{"learn":[142.8357081],"iteration":438,"passed_time":0.3456010422,"remaining_time":0.4416450675}, +{"learn":[142.5387687],"iteration":439,"passed_time":0.3463049516,"remaining_time":0.4407517565}, +{"learn":[142.2042503],"iteration":440,"passed_time":0.3469375272,"remaining_time":0.4397688837}, +{"learn":[142.0426301],"iteration":441,"passed_time":0.3476209558,"remaining_time":0.4388517948}, +{"learn":[141.8952894],"iteration":442,"passed_time":0.3481070373,"remaining_time":0.4376876293}, +{"learn":[141.6464236],"iteration":443,"passed_time":0.3487595953,"remaining_time":0.4367349888}, +{"learn":[141.5411481],"iteration":444,"passed_time":0.3496728627,"remaining_time":0.4361088512}, +{"learn":[141.0823141],"iteration":445,"passed_time":0.3503799578,"remaining_time":0.4352253287}, +{"learn":[140.4287564],"iteration":446,"passed_time":0.3511061425,"remaining_time":0.434366212}, +{"learn":[140.1803918],"iteration":447,"passed_time":0.3517713368,"remaining_time":0.4334325399}, +{"learn":[139.9958853],"iteration":448,"passed_time":0.3524543155,"remaining_time":0.4325218883}, +{"learn":[139.7426692],"iteration":449,"passed_time":0.3531524215,"remaining_time":0.4316307374}, +{"learn":[139.1196939],"iteration":450,"passed_time":0.3538057256,"remaining_time":0.4306859054}, +{"learn":[138.6960149],"iteration":451,"passed_time":0.354538981,"remaining_time":0.4298392956}, +{"learn":[138.4218897],"iteration":452,"passed_time":0.3554323105,"remaining_time":0.4291864765}, +{"learn":[138.2403828],"iteration":453,"passed_time":0.3562520743,"remaining_time":0.4284441246}, +{"learn":[138.0915511],"iteration":454,"passed_time":0.3571315749,"remaining_time":0.4277729854}, +{"learn":[137.9493266],"iteration":455,"passed_time":0.3579010513,"remaining_time":0.4269696753}, +{"learn":[137.7770819],"iteration":456,"passed_time":0.3586828724,"remaining_time":0.426181181}, +{"learn":[137.3442044],"iteration":457,"passed_time":0.3595071309,"remaining_time":0.4254429365}, +{"learn":[137.1171304],"iteration":458,"passed_time":0.3602601247,"remaining_time":0.4246203213}, +{"learn":[136.6867566],"iteration":459,"passed_time":0.3610113779,"remaining_time":0.4237959654}, +{"learn":[136.518458],"iteration":460,"passed_time":0.3617839417,"remaining_time":0.4229968429}, +{"learn":[136.0988944],"iteration":461,"passed_time":0.3626347744,"remaining_time":0.4222889797}, +{"learn":[136.0065977],"iteration":462,"passed_time":0.3634189378,"remaining_time":0.4215031741}, +{"learn":[135.9112619],"iteration":463,"passed_time":0.3642669063,"remaining_time":0.4207910815}, +{"learn":[135.6242991],"iteration":464,"passed_time":0.3657024719,"remaining_time":0.4207544569}, +{"learn":[135.5102452],"iteration":465,"passed_time":0.3663477897,"remaining_time":0.4198062654}, +{"learn":[135.1636411],"iteration":466,"passed_time":0.367122744,"remaining_time":0.4190073288}, +{"learn":[135.0992177],"iteration":467,"passed_time":0.3680082784,"remaining_time":0.4183341968}, +{"learn":[134.8365283],"iteration":468,"passed_time":0.3687949318,"remaining_time":0.4175482063}, +{"learn":[134.7463366],"iteration":469,"passed_time":0.3695548426,"remaining_time":0.4167320565}, +{"learn":[134.587287],"iteration":470,"passed_time":0.3703077014,"remaining_time":0.4159082252}, +{"learn":[134.4480214],"iteration":471,"passed_time":0.3710675734,"remaining_time":0.4150925397}, +{"learn":[133.9584806],"iteration":472,"passed_time":0.3718711566,"remaining_time":0.4143257918}, +{"learn":[133.8098951],"iteration":473,"passed_time":0.3727293313,"remaining_time":0.4136194689}, +{"learn":[133.4703971],"iteration":474,"passed_time":0.373516589,"remaining_time":0.4128341247}, +{"learn":[133.0607757],"iteration":475,"passed_time":0.3747673253,"remaining_time":0.4125589884}, +{"learn":[132.8214312],"iteration":476,"passed_time":0.3755628445,"remaining_time":0.4117806451}, +{"learn":[132.6378881],"iteration":477,"passed_time":0.3762671474,"remaining_time":0.4109026171}, +{"learn":[132.3500025],"iteration":478,"passed_time":0.3769785902,"remaining_time":0.4100330804}, +{"learn":[132.029824],"iteration":479,"passed_time":0.3777045391,"remaining_time":0.4091799174}, +{"learn":[131.802763],"iteration":480,"passed_time":0.3784316215,"remaining_time":0.4083285064}, +{"learn":[131.4477917],"iteration":481,"passed_time":0.3791212487,"remaining_time":0.4074373586}, +{"learn":[131.340861],"iteration":482,"passed_time":0.3797984811,"remaining_time":0.4065337779}, +{"learn":[131.138128],"iteration":483,"passed_time":0.3804936332,"remaining_time":0.4056502371}, +{"learn":[130.8254085],"iteration":484,"passed_time":0.3811535885,"remaining_time":0.4047300992}, +{"learn":[130.6226731],"iteration":485,"passed_time":0.3818615219,"remaining_time":0.4038617742}, +{"learn":[130.5353426],"iteration":486,"passed_time":0.3824941239,"remaining_time":0.4029147548}, +{"learn":[130.2002559],"iteration":487,"passed_time":0.3831915747,"remaining_time":0.402037062}, +{"learn":[129.8650409],"iteration":488,"passed_time":0.3839342028,"remaining_time":0.4012073162}, +{"learn":[129.7614838],"iteration":489,"passed_time":0.384632996,"remaining_time":0.400332302}, +{"learn":[129.7035868],"iteration":490,"passed_time":0.3854408813,"remaining_time":0.3995710969}, +{"learn":[129.55131],"iteration":491,"passed_time":0.3862470198,"remaining_time":0.3988078985}, +{"learn":[128.9822814],"iteration":492,"passed_time":0.3877103564,"remaining_time":0.3987203868}, +{"learn":[128.7051594],"iteration":493,"passed_time":0.3885107746,"remaining_time":0.3979482833}, +{"learn":[128.6011681],"iteration":494,"passed_time":0.3890285653,"remaining_time":0.3968877282}, +{"learn":[128.4308561],"iteration":495,"passed_time":0.3898226152,"remaining_time":0.3961100768}, +{"learn":[128.307177],"iteration":496,"passed_time":0.3904763826,"remaining_time":0.3951903832}, +{"learn":[128.0653125],"iteration":497,"passed_time":0.3912745466,"remaining_time":0.394417314}, +{"learn":[127.6727011],"iteration":498,"passed_time":0.3920671814,"remaining_time":0.3936385929}, +{"learn":[127.4025463],"iteration":499,"passed_time":0.3927746746,"remaining_time":0.3927746746}, +{"learn":[127.2504625],"iteration":500,"passed_time":0.3935051998,"remaining_time":0.3919343208}, +{"learn":[126.7573321],"iteration":501,"passed_time":0.3942010118,"remaining_time":0.3910599679}, +{"learn":[126.5927506],"iteration":502,"passed_time":0.3948737544,"remaining_time":0.3901635307}, +{"learn":[126.3386114],"iteration":503,"passed_time":0.3955091027,"remaining_time":0.3892311804}, +{"learn":[125.9602791],"iteration":504,"passed_time":0.3962031505,"remaining_time":0.3883575436}, +{"learn":[125.7382376],"iteration":505,"passed_time":0.3969743797,"remaining_time":0.3875599675}, +{"learn":[125.5238531],"iteration":506,"passed_time":0.397672074,"remaining_time":0.3866909911}, +{"learn":[125.4034315],"iteration":507,"passed_time":0.3983463546,"remaining_time":0.3858000128}, +{"learn":[125.108111],"iteration":508,"passed_time":0.399085609,"remaining_time":0.3849725619}, +{"learn":[124.888637],"iteration":509,"passed_time":0.3998180539,"remaining_time":0.3841389146}, +{"learn":[124.5410307],"iteration":510,"passed_time":0.4005124711,"remaining_time":0.3832692727}, +{"learn":[124.4532414],"iteration":511,"passed_time":0.4012213082,"remaining_time":0.3824140594}, +{"learn":[124.2402559],"iteration":512,"passed_time":0.4023745223,"remaining_time":0.3819812717}, +{"learn":[124.0493354],"iteration":513,"passed_time":0.4032401044,"remaining_time":0.3812737174}, +{"learn":[123.8903048],"iteration":514,"passed_time":0.4039687924,"remaining_time":0.3804366298}, +{"learn":[123.2513784],"iteration":515,"passed_time":0.4051548784,"remaining_time":0.3800289945}, +{"learn":[122.9060997],"iteration":516,"passed_time":0.4059148746,"remaining_time":0.3792202794}, +{"learn":[122.2659462],"iteration":517,"passed_time":0.4067721264,"remaining_time":0.3785022488}, +{"learn":[121.9153759],"iteration":518,"passed_time":0.4074913036,"remaining_time":0.3776557169}, +{"learn":[121.768553],"iteration":519,"passed_time":0.4081988823,"remaining_time":0.3767989683}, +{"learn":[121.5586427],"iteration":520,"passed_time":0.409995707,"remaining_time":0.3769442297}, +{"learn":[121.328656],"iteration":521,"passed_time":0.4107966725,"remaining_time":0.3761701331}, +{"learn":[121.2414438],"iteration":522,"passed_time":0.4115722618,"remaining_time":0.3753727894}, +{"learn":[120.9509013],"iteration":523,"passed_time":0.4123457076,"remaining_time":0.3745735817}, +{"learn":[120.7287231],"iteration":524,"passed_time":0.4131926733,"remaining_time":0.3738409902}, +{"learn":[120.5182445],"iteration":525,"passed_time":0.4139855734,"remaining_time":0.373059243}, +{"learn":[120.1552011],"iteration":526,"passed_time":0.4147480129,"remaining_time":0.372250114}, +{"learn":[119.8518006],"iteration":527,"passed_time":0.4155235975,"remaining_time":0.3714529129}, +{"learn":[119.5758902],"iteration":528,"passed_time":0.4162645711,"remaining_time":0.3706249773}, +{"learn":[119.4684522],"iteration":529,"passed_time":0.4170442563,"remaining_time":0.369831699}, +{"learn":[119.1905877],"iteration":530,"passed_time":0.4200529662,"remaining_time":0.3710072338}, +{"learn":[119.120799],"iteration":531,"passed_time":0.4207544349,"remaining_time":0.37013736}, +{"learn":[118.8522754],"iteration":532,"passed_time":0.4216467363,"remaining_time":0.3694353206}, +{"learn":[118.5679242],"iteration":533,"passed_time":0.4225080099,"remaining_time":0.3687054918}, +{"learn":[118.2441926],"iteration":534,"passed_time":0.423325042,"remaining_time":0.3679367187}, +{"learn":[118.0571382],"iteration":535,"passed_time":0.424024176,"remaining_time":0.3670657046}, +{"learn":[117.670673],"iteration":536,"passed_time":0.4248534192,"remaining_time":0.3663075104}, +{"learn":[117.4626467],"iteration":537,"passed_time":0.4255302239,"remaining_time":0.3654181477}, +{"learn":[117.3972691],"iteration":538,"passed_time":0.4263780909,"remaining_time":0.3646758811}, +{"learn":[117.0498585],"iteration":539,"passed_time":0.4271672124,"remaining_time":0.3638831809}, +{"learn":[116.8864118],"iteration":540,"passed_time":0.4279159255,"remaining_time":0.3630562104}, +{"learn":[116.7032135],"iteration":541,"passed_time":0.4287596721,"remaining_time":0.3623098336}, +{"learn":[116.4747407],"iteration":542,"passed_time":0.4294964423,"remaining_time":0.3614730647}, +{"learn":[116.2745499],"iteration":543,"passed_time":0.4302697728,"remaining_time":0.3606673095}, +{"learn":[116.1634434],"iteration":544,"passed_time":0.4310846419,"remaining_time":0.3598963524}, +{"learn":[115.8837329],"iteration":545,"passed_time":0.4318891937,"remaining_time":0.3591166555}, +{"learn":[115.7847364],"iteration":546,"passed_time":0.4327173048,"remaining_time":0.3583563786}, +{"learn":[115.4726518],"iteration":547,"passed_time":0.4350198608,"remaining_time":0.358812002}, +{"learn":[115.2380594],"iteration":548,"passed_time":0.4359567659,"remaining_time":0.3581357038}, +{"learn":[114.9832854],"iteration":549,"passed_time":0.4366890203,"remaining_time":0.3572910166}, +{"learn":[114.7923225],"iteration":550,"passed_time":0.4374918564,"remaining_time":0.3565042532}, +{"learn":[114.7061856],"iteration":551,"passed_time":0.4382692012,"remaining_time":0.355696743}, +{"learn":[114.2484883],"iteration":552,"passed_time":0.4390679069,"remaining_time":0.3549066083}, +{"learn":[113.8249474],"iteration":553,"passed_time":0.4398571943,"remaining_time":0.3541088604}, +{"learn":[113.3587873],"iteration":554,"passed_time":0.4406256533,"remaining_time":0.3532944428}, +{"learn":[113.2361388],"iteration":555,"passed_time":0.4414523995,"remaining_time":0.3525267363}, +{"learn":[112.9708343],"iteration":556,"passed_time":0.4422158464,"remaining_time":0.3517084739}, +{"learn":[112.9087039],"iteration":557,"passed_time":0.4430209028,"remaining_time":0.3509233674}, +{"learn":[112.7109537],"iteration":558,"passed_time":0.4438200187,"remaining_time":0.3501335031}, +{"learn":[112.423592],"iteration":559,"passed_time":0.4446167561,"remaining_time":0.3493417369}, +{"learn":[112.1257099],"iteration":560,"passed_time":0.4454358233,"remaining_time":0.3485674268}, +{"learn":[112.030136],"iteration":561,"passed_time":0.4461519545,"remaining_time":0.3477127332}, +{"learn":[111.7072661],"iteration":562,"passed_time":0.4469219348,"remaining_time":0.3469003295}, +{"learn":[111.4030351],"iteration":563,"passed_time":0.4476818427,"remaining_time":0.3460802898}, +{"learn":[111.239361],"iteration":564,"passed_time":0.4484021036,"remaining_time":0.3452299382}, +{"learn":[110.9951902],"iteration":565,"passed_time":0.449314876,"remaining_time":0.3445276611}, +{"learn":[110.7555032],"iteration":566,"passed_time":0.4502279963,"remaining_time":0.3438249072}, +{"learn":[110.4762113],"iteration":567,"passed_time":0.4511769504,"remaining_time":0.3431486665}, +{"learn":[110.3324024],"iteration":568,"passed_time":0.451994751,"remaining_time":0.3423721225}, +{"learn":[110.1500777],"iteration":569,"passed_time":0.4531206866,"remaining_time":0.3418278864}, +{"learn":[109.8347114],"iteration":570,"passed_time":0.4539982843,"remaining_time":0.3410950332}, +{"learn":[109.6719111],"iteration":571,"passed_time":0.4548505203,"remaining_time":0.340342697}, +{"learn":[109.3507972],"iteration":572,"passed_time":0.4555675976,"remaining_time":0.3394892918}, +{"learn":[109.0393228],"iteration":573,"passed_time":0.4562556818,"remaining_time":0.338614844}, +{"learn":[108.9092308],"iteration":574,"passed_time":0.4569445801,"remaining_time":0.3377416462}, +{"learn":[108.5653394],"iteration":575,"passed_time":0.4576438887,"remaining_time":0.3368767514}, +{"learn":[108.4450533],"iteration":576,"passed_time":0.4583218118,"remaining_time":0.3359967529}, +{"learn":[108.2495707],"iteration":577,"passed_time":0.4589888198,"remaining_time":0.3351094843}, +{"learn":[108.1288216],"iteration":578,"passed_time":0.4596515406,"remaining_time":0.3342198594}, +{"learn":[107.9123132],"iteration":579,"passed_time":0.4603422806,"remaining_time":0.3333513066}, +{"learn":[107.6536187],"iteration":580,"passed_time":0.4610228753,"remaining_time":0.3324760495}, +{"learn":[107.4904367],"iteration":581,"passed_time":0.4617471769,"remaining_time":0.3316328521}, +{"learn":[107.1957928],"iteration":582,"passed_time":0.4624543923,"remaining_time":0.3307778415}, +{"learn":[106.9065549],"iteration":583,"passed_time":0.4631395366,"remaining_time":0.3299076151}, +{"learn":[106.7433792],"iteration":584,"passed_time":0.4642239834,"remaining_time":0.3293212874}, +{"learn":[106.6253206],"iteration":585,"passed_time":0.4652352206,"remaining_time":0.3286815381}, +{"learn":[106.4358702],"iteration":586,"passed_time":0.4660687078,"remaining_time":0.3279154622}, +{"learn":[106.1281316],"iteration":587,"passed_time":0.4672059101,"remaining_time":0.3273619642}, +{"learn":[105.8891673],"iteration":588,"passed_time":0.4679098908,"remaining_time":0.3265041852}, +{"learn":[105.4787768],"iteration":589,"passed_time":0.4686930301,"remaining_time":0.3257019362}, +{"learn":[105.2468209],"iteration":590,"passed_time":0.4693668321,"remaining_time":0.3248240852}, +{"learn":[105.0982909],"iteration":591,"passed_time":0.4701346348,"remaining_time":0.3240117078}, +{"learn":[104.8447079],"iteration":592,"passed_time":0.4707926298,"remaining_time":0.3231241152}, +{"learn":[104.5779736],"iteration":593,"passed_time":0.4715109685,"remaining_time":0.3222785407}, +{"learn":[104.4110502],"iteration":594,"passed_time":0.4721990484,"remaining_time":0.3214127977}, +{"learn":[104.0919646],"iteration":595,"passed_time":0.4729209495,"remaining_time":0.3205705765}, +{"learn":[103.8919657],"iteration":596,"passed_time":0.4736261245,"remaining_time":0.3197174676}, +{"learn":[103.7196598],"iteration":597,"passed_time":0.4743214736,"remaining_time":0.3188582481}, +{"learn":[103.4492347],"iteration":598,"passed_time":0.4750540599,"remaining_time":0.3180245042}, +{"learn":[103.2740587],"iteration":599,"passed_time":0.4757380094,"remaining_time":0.3171586729}, +{"learn":[103.1276456],"iteration":600,"passed_time":0.4764577468,"remaining_time":0.3163172063}, +{"learn":[102.9634171],"iteration":601,"passed_time":0.477147973,"remaining_time":0.3154566333}, +{"learn":[102.8259149],"iteration":602,"passed_time":0.477841893,"remaining_time":0.3145990573}, +{"learn":[102.7001608],"iteration":603,"passed_time":0.4785327652,"remaining_time":0.3137400248}, +{"learn":[102.3681297],"iteration":604,"passed_time":0.4792538273,"remaining_time":0.3129012592}, +{"learn":[102.1013055],"iteration":605,"passed_time":0.4799419689,"remaining_time":0.3120414781}, +{"learn":[102.0398696],"iteration":606,"passed_time":0.4811891844,"remaining_time":0.3115442331}, +{"learn":[101.9173139],"iteration":607,"passed_time":0.4821013094,"remaining_time":0.3108284758}, +{"learn":[101.679954],"iteration":608,"passed_time":0.4828874482,"remaining_time":0.3100311859}, +{"learn":[101.4066016],"iteration":609,"passed_time":0.4837180353,"remaining_time":0.3092623504}, +{"learn":[101.3379424],"iteration":610,"passed_time":0.4844565593,"remaining_time":0.3084346998}, +{"learn":[100.9210462],"iteration":611,"passed_time":0.4851632441,"remaining_time":0.3075871548}, +{"learn":[100.6453409],"iteration":612,"passed_time":0.4859509872,"remaining_time":0.3067912431}, +{"learn":[100.4676302],"iteration":613,"passed_time":0.4866537496,"remaining_time":0.3059419338}, +{"learn":[100.3387898],"iteration":614,"passed_time":0.4873585318,"remaining_time":0.3050943654}, +{"learn":[100.2590426],"iteration":615,"passed_time":0.4880636202,"remaining_time":0.3042474516}, +{"learn":[100.0247543],"iteration":616,"passed_time":0.4887351368,"remaining_time":0.3033801578}, +{"learn":[99.99480267],"iteration":617,"passed_time":0.4894739965,"remaining_time":0.3025551241}, +{"learn":[99.81066888],"iteration":618,"passed_time":0.4901212664,"remaining_time":0.3016739944}, +{"learn":[99.68847078],"iteration":619,"passed_time":0.4908183889,"remaining_time":0.3008241738}, +{"learn":[99.31388979],"iteration":620,"passed_time":0.4915709632,"remaining_time":0.3000086877}, +{"learn":[99.14994819],"iteration":621,"passed_time":0.4921902068,"remaining_time":0.2991123765}, +{"learn":[98.97268473],"iteration":622,"passed_time":0.4928377712,"remaining_time":0.2982340927}, +{"learn":[98.8268423],"iteration":623,"passed_time":0.4935341138,"remaining_time":0.2973859403}, +{"learn":[98.75382222],"iteration":624,"passed_time":0.4942047725,"remaining_time":0.2965228635}, +{"learn":[98.5446163],"iteration":625,"passed_time":0.4948727586,"remaining_time":0.2956588047}, +{"learn":[98.31367241],"iteration":626,"passed_time":0.4960391022,"remaining_time":0.2950918423}, +{"learn":[97.98978586],"iteration":627,"passed_time":0.4969278145,"remaining_time":0.2943585143}, +{"learn":[97.88782136],"iteration":628,"passed_time":0.4977580908,"remaining_time":0.2935902252}, +{"learn":[97.66350146],"iteration":629,"passed_time":0.4986682518,"remaining_time":0.2928686558}, +{"learn":[97.55228588],"iteration":630,"passed_time":0.4994007915,"remaining_time":0.2920426182}, +{"learn":[97.22287279],"iteration":631,"passed_time":0.5002286474,"remaining_time":0.2912723769}, +{"learn":[96.94093467],"iteration":632,"passed_time":0.5008796211,"remaining_time":0.2903994012}, +{"learn":[96.90730378],"iteration":633,"passed_time":0.5016105615,"remaining_time":0.2895732894}, +{"learn":[96.72645055],"iteration":634,"passed_time":0.5022623528,"remaining_time":0.2887019823}, +{"learn":[96.51649102],"iteration":635,"passed_time":0.5029871982,"remaining_time":0.2878731763}, +{"learn":[96.48646053],"iteration":636,"passed_time":0.5036426214,"remaining_time":0.2870051359}, +{"learn":[96.28440839],"iteration":637,"passed_time":0.5043689065,"remaining_time":0.2861779689}, +{"learn":[96.12574304],"iteration":638,"passed_time":0.5051168618,"remaining_time":0.2853633601}, +{"learn":[96.10080732],"iteration":639,"passed_time":0.5057668246,"remaining_time":0.2844938388}, +{"learn":[95.89441847],"iteration":640,"passed_time":0.5064589651,"remaining_time":0.2836486248}, +{"learn":[95.66836282],"iteration":641,"passed_time":0.5071504601,"remaining_time":0.2828035276}, +{"learn":[95.45630098],"iteration":642,"passed_time":0.5078985921,"remaining_time":0.2819903536}, +{"learn":[95.38867496],"iteration":643,"passed_time":0.5085938678,"remaining_time":0.2811481629}, +{"learn":[95.36114208],"iteration":644,"passed_time":0.5092591682,"remaining_time":0.2802899298}, +{"learn":[95.32338394],"iteration":645,"passed_time":0.5099181108,"remaining_time":0.2794288099}, +{"learn":[95.13865864],"iteration":646,"passed_time":0.5106966827,"remaining_time":0.2786335842}, +{"learn":[95.04087212],"iteration":647,"passed_time":0.5113817515,"remaining_time":0.2777876181}, +{"learn":[94.80557884],"iteration":648,"passed_time":0.5121271504,"remaining_time":0.2769747762}, +{"learn":[94.73138699],"iteration":649,"passed_time":0.5129867905,"remaining_time":0.2762236564}, +{"learn":[94.58108436],"iteration":650,"passed_time":0.5138682554,"remaining_time":0.2754839034}, +{"learn":[94.36301263],"iteration":651,"passed_time":0.5146567687,"remaining_time":0.2746941035}, +{"learn":[94.31236028],"iteration":652,"passed_time":0.5153630006,"remaining_time":0.2738605838}, +{"learn":[94.27889282],"iteration":653,"passed_time":0.5159975291,"remaining_time":0.2729895185}, +{"learn":[94.10901123],"iteration":654,"passed_time":0.5167286981,"remaining_time":0.2721700776}, +{"learn":[93.96474618],"iteration":655,"passed_time":0.5174240002,"remaining_time":0.2713320977}, +{"learn":[93.7421906],"iteration":656,"passed_time":0.5181698898,"remaining_time":0.2705209622}, +{"learn":[93.60514066],"iteration":657,"passed_time":0.5188670115,"remaining_time":0.2696846777}, +{"learn":[93.46612437],"iteration":658,"passed_time":0.5196392555,"remaining_time":0.2688876876}, +{"learn":[93.33229342],"iteration":659,"passed_time":0.5203491179,"remaining_time":0.2680586365}, +{"learn":[93.21079587],"iteration":660,"passed_time":0.5211038193,"remaining_time":0.2672529421}, +{"learn":[93.10705876],"iteration":661,"passed_time":0.5218962945,"remaining_time":0.2664666881}, +{"learn":[92.81810673],"iteration":662,"passed_time":0.5226022497,"remaining_time":0.2656364377}, +{"learn":[92.62650619],"iteration":663,"passed_time":0.5233367263,"remaining_time":0.264820994}, +{"learn":[92.42888654],"iteration":664,"passed_time":0.5240591444,"remaining_time":0.2639997194}, +{"learn":[92.09176732],"iteration":665,"passed_time":0.5247766142,"remaining_time":0.26317626}, +{"learn":[92.04854396],"iteration":666,"passed_time":0.5255073908,"remaining_time":0.2623597618}, +{"learn":[91.88550859],"iteration":667,"passed_time":0.5263340708,"remaining_time":0.2615911849}, +{"learn":[91.85350035],"iteration":668,"passed_time":0.5271081748,"remaining_time":0.2607964213}, +{"learn":[91.77807671],"iteration":669,"passed_time":0.528021832,"remaining_time":0.2600704546}, +{"learn":[91.65435283],"iteration":670,"passed_time":0.528839096,"remaining_time":0.2592966655}, +{"learn":[91.56783533],"iteration":671,"passed_time":0.5297163699,"remaining_time":0.2585520377}, +{"learn":[91.26580867],"iteration":672,"passed_time":0.5304303232,"remaining_time":0.2577276607}, +{"learn":[91.16238764],"iteration":673,"passed_time":0.5311953529,"remaining_time":0.2569283161}, +{"learn":[91.10065046],"iteration":674,"passed_time":0.5318643397,"remaining_time":0.2560828302}, +{"learn":[90.85117159],"iteration":675,"passed_time":0.5325459664,"remaining_time":0.2552439247}, +{"learn":[90.69540399],"iteration":676,"passed_time":0.5332966017,"remaining_time":0.2544384082}, +{"learn":[90.57391813],"iteration":677,"passed_time":0.534000504,"remaining_time":0.2536108588}, +{"learn":[90.51437297],"iteration":678,"passed_time":0.5347579481,"remaining_time":0.2528089858}, +{"learn":[90.33889177],"iteration":679,"passed_time":0.5354538608,"remaining_time":0.2519782875}, +{"learn":[90.24276011],"iteration":680,"passed_time":0.5361224954,"remaining_time":0.2511352071}, +{"learn":[90.10789257],"iteration":681,"passed_time":0.5368487517,"remaining_time":0.2503195059}, +{"learn":[89.95880505],"iteration":682,"passed_time":0.5375062891,"remaining_time":0.2494721722}, +{"learn":[89.87212108],"iteration":683,"passed_time":0.5382400652,"remaining_time":0.2486606149}, +{"learn":[89.7088169],"iteration":684,"passed_time":0.5389202001,"remaining_time":0.2478246176}, +{"learn":[89.65178757],"iteration":685,"passed_time":0.5395594986,"remaining_time":0.2469703828}, +{"learn":[89.45790266],"iteration":686,"passed_time":0.5402365223,"remaining_time":0.2461339614}, +{"learn":[89.28717191],"iteration":687,"passed_time":0.5408789428,"remaining_time":0.2452823113}, +{"learn":[89.01579809],"iteration":688,"passed_time":0.5415824167,"remaining_time":0.2444588267}, +{"learn":[88.8669891],"iteration":689,"passed_time":0.5425465212,"remaining_time":0.2437527849}, +{"learn":[88.6699944],"iteration":690,"passed_time":0.5434097686,"remaining_time":0.2430008951}, +{"learn":[88.56760592],"iteration":691,"passed_time":0.5442042224,"remaining_time":0.2422180643}, +{"learn":[88.44988882],"iteration":692,"passed_time":0.5449873307,"remaining_time":0.2414301739}, +{"learn":[88.27053152],"iteration":693,"passed_time":0.5457085581,"remaining_time":0.2406150127}, +{"learn":[88.2414795],"iteration":694,"passed_time":0.5464008981,"remaining_time":0.2397874445}, +{"learn":[88.15186789],"iteration":695,"passed_time":0.5471067144,"remaining_time":0.2389661511}, +{"learn":[88.05019566],"iteration":696,"passed_time":0.5477748726,"remaining_time":0.2381288184}, +{"learn":[87.99223331],"iteration":697,"passed_time":0.5484767048,"remaining_time":0.2373065399}, +{"learn":[87.73657542],"iteration":698,"passed_time":0.5492154977,"remaining_time":0.2365005219}, +{"learn":[87.66230383],"iteration":699,"passed_time":0.549911164,"remaining_time":0.2356762131}, +{"learn":[87.55509554],"iteration":700,"passed_time":0.5506003596,"remaining_time":0.2348495114}, +{"learn":[87.3960713],"iteration":701,"passed_time":0.5513270902,"remaining_time":0.2340391352}, +{"learn":[87.35367605],"iteration":702,"passed_time":0.5520176629,"remaining_time":0.233213721}, +{"learn":[87.31612871],"iteration":703,"passed_time":0.5527335476,"remaining_time":0.2323993325}, +{"learn":[87.28308304],"iteration":704,"passed_time":0.5534368292,"remaining_time":0.2315799498}, +{"learn":[87.10333984],"iteration":705,"passed_time":0.5541477179,"remaining_time":0.2307640638}, +{"learn":[86.95975665],"iteration":706,"passed_time":0.5548600751,"remaining_time":0.2299490834}, +{"learn":[86.74618961],"iteration":707,"passed_time":0.5555675455,"remaining_time":0.2291323775}, +{"learn":[86.59571901],"iteration":708,"passed_time":0.5562639173,"remaining_time":0.2283114244}, +{"learn":[86.5503641],"iteration":709,"passed_time":0.5570510524,"remaining_time":0.2275278947}, +{"learn":[86.37323419],"iteration":710,"passed_time":0.5586928433,"remaining_time":0.2270917465}, +{"learn":[86.33957217],"iteration":711,"passed_time":0.5595801722,"remaining_time":0.2263470359}, +{"learn":[86.14207856],"iteration":712,"passed_time":0.5606072798,"remaining_time":0.2256581898}, +{"learn":[85.97356517],"iteration":713,"passed_time":0.5622974661,"remaining_time":0.225233999}, +{"learn":[85.82683155],"iteration":714,"passed_time":0.5630898267,"remaining_time":0.2244483924}, +{"learn":[85.66753612],"iteration":715,"passed_time":0.563774477,"remaining_time":0.2236200439}, +{"learn":[85.59529512],"iteration":716,"passed_time":0.5645601233,"remaining_time":0.2228319594}, +{"learn":[85.54704191],"iteration":717,"passed_time":0.5653043118,"remaining_time":0.2220275988}, +{"learn":[85.44003169],"iteration":718,"passed_time":0.5659984098,"remaining_time":0.2212038292}, +{"learn":[85.35282701],"iteration":719,"passed_time":0.5666923085,"remaining_time":0.2203803422}, +{"learn":[85.11502108],"iteration":720,"passed_time":0.5673529244,"remaining_time":0.2195443355}, +{"learn":[84.99295044],"iteration":721,"passed_time":0.5680756424,"remaining_time":0.2187327266}, +{"learn":[84.84849866],"iteration":722,"passed_time":0.5689289809,"remaining_time":0.2179714076}, +{"learn":[84.719048],"iteration":723,"passed_time":0.5696097063,"remaining_time":0.2171440317}, +{"learn":[84.61907861],"iteration":724,"passed_time":0.5703740463,"remaining_time":0.2163487762}, +{"learn":[84.50627558],"iteration":725,"passed_time":0.5710536894,"remaining_time":0.2155216404}, +{"learn":[84.40820784],"iteration":726,"passed_time":0.5717404397,"remaining_time":0.2146975791}, +{"learn":[84.26996548],"iteration":727,"passed_time":0.5724877312,"remaining_time":0.213896515}, +{"learn":[84.13394306],"iteration":728,"passed_time":0.5736926945,"remaining_time":0.2132657342}, +{"learn":[84.07218013],"iteration":729,"passed_time":0.5744745587,"remaining_time":0.2124768916}, +{"learn":[83.96978134],"iteration":730,"passed_time":0.5752835297,"remaining_time":0.2116980431}, +{"learn":[83.87239832],"iteration":731,"passed_time":0.5764675086,"remaining_time":0.2110564102}, +{"learn":[83.68730916],"iteration":732,"passed_time":0.5772072764,"remaining_time":0.2102514909}, +{"learn":[83.59803147],"iteration":733,"passed_time":0.5779085189,"remaining_time":0.2094327875}, +{"learn":[83.50674817],"iteration":734,"passed_time":0.5785820087,"remaining_time":0.2086043977}, +{"learn":[83.40334104],"iteration":735,"passed_time":0.5792795435,"remaining_time":0.2077850536}, +{"learn":[83.34292332],"iteration":736,"passed_time":0.5799848833,"remaining_time":0.2069688254}, +{"learn":[83.2841552],"iteration":737,"passed_time":0.5807341513,"remaining_time":0.2061684927}, +{"learn":[83.1251919],"iteration":738,"passed_time":0.5814365262,"remaining_time":0.2053517366}, +{"learn":[82.95627663],"iteration":739,"passed_time":0.5821384379,"remaining_time":0.2045351268}, +{"learn":[82.86885815],"iteration":740,"passed_time":0.5828135561,"remaining_time":0.2037094616}, +{"learn":[82.71013967],"iteration":741,"passed_time":0.5835325297,"remaining_time":0.202899451}, +{"learn":[82.65586453],"iteration":742,"passed_time":0.5842183786,"remaining_time":0.2020782279}, +{"learn":[82.49744791],"iteration":743,"passed_time":0.5849488148,"remaining_time":0.2012727105}, +{"learn":[82.41674243],"iteration":744,"passed_time":0.5856415308,"remaining_time":0.2004544837}, +{"learn":[82.29664345],"iteration":745,"passed_time":0.5863524964,"remaining_time":0.1996428071}, +{"learn":[82.15066517],"iteration":746,"passed_time":0.587052426,"remaining_time":0.1988276624}, +{"learn":[82.0370734],"iteration":747,"passed_time":0.5877491631,"remaining_time":0.1980117502}, +{"learn":[81.86493678],"iteration":748,"passed_time":0.5906236844,"remaining_time":0.197925961}, +{"learn":[81.6952753],"iteration":749,"passed_time":0.5915055033,"remaining_time":0.1971685011}, +{"learn":[81.52076307],"iteration":750,"passed_time":0.5922371784,"remaining_time":0.1963609286}, +{"learn":[81.47245048],"iteration":751,"passed_time":0.5929570817,"remaining_time":0.1955496759}, +{"learn":[81.33248962],"iteration":752,"passed_time":0.5936410334,"remaining_time":0.1947268728}, +{"learn":[81.17612462],"iteration":753,"passed_time":0.5943301182,"remaining_time":0.1939061128}, +{"learn":[81.03819438],"iteration":754,"passed_time":0.5950057994,"remaining_time":0.1930813521}, +{"learn":[80.96675016],"iteration":755,"passed_time":0.5956989581,"remaining_time":0.1922626267}, +{"learn":[80.82905315],"iteration":756,"passed_time":0.596402797,"remaining_time":0.1914476614}, +{"learn":[80.70283152],"iteration":757,"passed_time":0.5971121262,"remaining_time":0.1906347421}, +{"learn":[80.59212139],"iteration":758,"passed_time":0.5978766948,"remaining_time":0.1898396356}, +{"learn":[80.47676188],"iteration":759,"passed_time":0.5985269763,"remaining_time":0.1890085188}, +{"learn":[80.39467719],"iteration":760,"passed_time":0.5992300805,"remaining_time":0.1881944668}, +{"learn":[80.29316384],"iteration":761,"passed_time":0.5999728603,"remaining_time":0.1873930981}, +{"learn":[80.25419775],"iteration":762,"passed_time":0.6006487726,"remaining_time":0.1865711128}, +{"learn":[80.18231027],"iteration":763,"passed_time":0.601315945,"remaining_time":0.1857468102}, +{"learn":[80.03530867],"iteration":764,"passed_time":0.6020048575,"remaining_time":0.1849295968}, +{"learn":[79.882003],"iteration":765,"passed_time":0.602681393,"remaining_time":0.1841089373}, +{"learn":[79.77233594],"iteration":766,"passed_time":0.6033975014,"remaining_time":0.1833006751}, +{"learn":[79.71948209],"iteration":767,"passed_time":0.6043010055,"remaining_time":0.1825492621}, +{"learn":[79.68256007],"iteration":768,"passed_time":0.6051361803,"remaining_time":0.181776928}, +{"learn":[79.5728087],"iteration":769,"passed_time":0.6059024247,"remaining_time":0.1809838411}, +{"learn":[79.48980365],"iteration":770,"passed_time":0.606774762,"remaining_time":0.1802223353}, +{"learn":[79.45344299],"iteration":771,"passed_time":0.6074893324,"remaining_time":0.1794139479}, +{"learn":[79.42383769],"iteration":772,"passed_time":0.6081550234,"remaining_time":0.1785914493}, +{"learn":[79.35304737],"iteration":773,"passed_time":0.6088516295,"remaining_time":0.1777783828}, +{"learn":[79.31777929],"iteration":774,"passed_time":0.6095126888,"remaining_time":0.1769552967}, +{"learn":[79.27584682],"iteration":775,"passed_time":0.6101470987,"remaining_time":0.1761249357}, +{"learn":[79.22300776],"iteration":776,"passed_time":0.6108225602,"remaining_time":0.1753068609}, +{"learn":[79.16336216],"iteration":777,"passed_time":0.6114805473,"remaining_time":0.1744841665}, +{"learn":[79.11542806],"iteration":778,"passed_time":0.6121921703,"remaining_time":0.1736771112}, +{"learn":[79.05297899],"iteration":779,"passed_time":0.6128772226,"remaining_time":0.1728628064}, +{"learn":[79.0055555],"iteration":780,"passed_time":0.6136133411,"remaining_time":0.172063152}, +{"learn":[78.96247249],"iteration":781,"passed_time":0.6143069065,"remaining_time":0.1712517975}, +{"learn":[78.93486725],"iteration":782,"passed_time":0.6150214491,"remaining_time":0.1704465574}, +{"learn":[78.86074492],"iteration":783,"passed_time":0.6157406477,"remaining_time":0.1696428315}, +{"learn":[78.7980841],"iteration":784,"passed_time":0.6164512964,"remaining_time":0.1688369793}, +{"learn":[78.68675842],"iteration":785,"passed_time":0.6171261859,"remaining_time":0.1680216333}, +{"learn":[78.56844849],"iteration":786,"passed_time":0.6178367384,"remaining_time":0.1672162964}, +{"learn":[78.45522467],"iteration":787,"passed_time":0.6189996585,"remaining_time":0.166532903}, +{"learn":[78.42915368],"iteration":788,"passed_time":0.6198542451,"remaining_time":0.1657658374}, +{"learn":[78.33271787],"iteration":789,"passed_time":0.6206450239,"remaining_time":0.1649815886}, +{"learn":[78.28517094],"iteration":790,"passed_time":0.6214469391,"remaining_time":0.1642002658}, +{"learn":[78.22550739],"iteration":791,"passed_time":0.6222275815,"remaining_time":0.1634133042}, +{"learn":[78.08128623],"iteration":792,"passed_time":0.6229308602,"remaining_time":0.162606164}, +{"learn":[78.00227098],"iteration":793,"passed_time":0.6236103449,"remaining_time":0.1617931122}, +{"learn":[77.84685715],"iteration":794,"passed_time":0.6243148914,"remaining_time":0.1609868588}, +{"learn":[77.7664605],"iteration":795,"passed_time":0.6251173567,"remaining_time":0.1602059557}, +{"learn":[77.67018672],"iteration":796,"passed_time":0.6258230666,"remaining_time":0.1594003545}, +{"learn":[77.58910134],"iteration":797,"passed_time":0.6265105294,"remaining_time":0.1585903846}, +{"learn":[77.44372873],"iteration":798,"passed_time":0.6272122011,"remaining_time":0.1577842959}, +{"learn":[77.37497353],"iteration":799,"passed_time":0.627911349,"remaining_time":0.1569778373}, +{"learn":[77.34882375],"iteration":800,"passed_time":0.6285931477,"remaining_time":0.1561673363}, +{"learn":[77.19068707],"iteration":801,"passed_time":0.6292539758,"remaining_time":0.1553519791}, +{"learn":[77.08922719],"iteration":802,"passed_time":0.6299858325,"remaining_time":0.1545544321}, +{"learn":[76.9729166],"iteration":803,"passed_time":0.6306619541,"remaining_time":0.1537434615}, +{"learn":[76.90348413],"iteration":804,"passed_time":0.6313562737,"remaining_time":0.152937234}, +{"learn":[76.82666583],"iteration":805,"passed_time":0.6320448005,"remaining_time":0.15212989}, +{"learn":[76.68116626],"iteration":806,"passed_time":0.6327180983,"remaining_time":0.1513191982}, +{"learn":[76.63374313],"iteration":807,"passed_time":0.6334837843,"remaining_time":0.1505308002}, +{"learn":[76.54946199],"iteration":808,"passed_time":0.6353693259,"remaining_time":0.1500068495}, +{"learn":[76.49248776],"iteration":809,"passed_time":0.636153259,"remaining_time":0.1492211348}, +{"learn":[76.30567098],"iteration":810,"passed_time":0.6369338775,"remaining_time":0.1484346521}, +{"learn":[76.20513103],"iteration":811,"passed_time":0.6380841085,"remaining_time":0.1477337591}, +{"learn":[76.14947506],"iteration":812,"passed_time":0.6388279669,"remaining_time":0.1469382901}, +{"learn":[76.07795348],"iteration":813,"passed_time":0.6395071892,"remaining_time":0.1461281784}, +{"learn":[76.03071793],"iteration":814,"passed_time":0.6401823992,"remaining_time":0.1453174771}, +{"learn":[75.85114002],"iteration":815,"passed_time":0.6409228105,"remaining_time":0.1445218102}, +{"learn":[75.72457319],"iteration":816,"passed_time":0.6446017846,"remaining_time":0.1443844879}, +{"learn":[75.62457528],"iteration":817,"passed_time":0.6453220021,"remaining_time":0.1435802009}, +{"learn":[75.57980812],"iteration":818,"passed_time":0.6460609694,"remaining_time":0.1427802631}, +{"learn":[75.50199726],"iteration":819,"passed_time":0.646843049,"remaining_time":0.1419899376}, +{"learn":[75.42896303],"iteration":820,"passed_time":0.6475823158,"remaining_time":0.1411902978}, +{"learn":[75.28107282],"iteration":821,"passed_time":0.6484158123,"remaining_time":0.14041121}, +{"learn":[75.24370116],"iteration":822,"passed_time":0.6491719459,"remaining_time":0.1396153517}, +{"learn":[75.21163781],"iteration":823,"passed_time":0.649970331,"remaining_time":0.1388286144}, +{"learn":[75.11238047],"iteration":824,"passed_time":0.6510685248,"remaining_time":0.1381054447}, +{"learn":[75.07821544],"iteration":825,"passed_time":0.6520026608,"remaining_time":0.1373468075}, +{"learn":[74.99763688],"iteration":826,"passed_time":0.6529194105,"remaining_time":0.1365841088}, +{"learn":[74.97260021],"iteration":827,"passed_time":0.6537992908,"remaining_time":0.1358133792}, +{"learn":[74.82280395],"iteration":828,"passed_time":0.6552552012,"remaining_time":0.1351612056}, +{"learn":[74.7142409],"iteration":829,"passed_time":0.656189855,"remaining_time":0.1344003317}, +{"learn":[74.68809134],"iteration":830,"passed_time":0.6571676623,"remaining_time":0.1336478158}, +{"learn":[74.66735038],"iteration":831,"passed_time":0.6579127713,"remaining_time":0.1328477711}, +{"learn":[74.62791607],"iteration":832,"passed_time":0.6587264532,"remaining_time":0.1320616059}, +{"learn":[74.4614704],"iteration":833,"passed_time":0.659462972,"remaining_time":0.131260016}, +{"learn":[74.42822033],"iteration":834,"passed_time":0.6602649954,"remaining_time":0.130471526}, +{"learn":[74.3786069],"iteration":835,"passed_time":0.6610943341,"remaining_time":0.1296883622}, +{"learn":[74.24628149],"iteration":836,"passed_time":0.6618613519,"remaining_time":0.1288929515}, +{"learn":[74.17289785],"iteration":837,"passed_time":0.6626922026,"remaining_time":0.1281099485}, +{"learn":[74.04392916],"iteration":838,"passed_time":0.6634163162,"remaining_time":0.1273063491}, +{"learn":[73.8944423],"iteration":839,"passed_time":0.6641587281,"remaining_time":0.1265064244}, +{"learn":[73.75377577],"iteration":840,"passed_time":0.6650179013,"remaining_time":0.1257287114}, +{"learn":[73.63426609],"iteration":841,"passed_time":0.6657815694,"remaining_time":0.1249328836}, +{"learn":[73.55942885],"iteration":842,"passed_time":0.6672051215,"remaining_time":0.1242600286}, +{"learn":[73.45438013],"iteration":843,"passed_time":0.6681559868,"remaining_time":0.123498026}, +{"learn":[73.2753604],"iteration":844,"passed_time":0.6690018166,"remaining_time":0.1227163095}, +{"learn":[73.10596468],"iteration":845,"passed_time":0.669853699,"remaining_time":0.1219355433}, +{"learn":[73.05334097],"iteration":846,"passed_time":0.6706752308,"remaining_time":0.1211491267}, +{"learn":[72.9262698],"iteration":847,"passed_time":0.6714689845,"remaining_time":0.1203576482}, +{"learn":[72.79142922],"iteration":848,"passed_time":0.672280738,"remaining_time":0.1195693657}, +{"learn":[72.66419711],"iteration":849,"passed_time":0.6731237482,"remaining_time":0.1187865438}, +{"learn":[72.46903723],"iteration":850,"passed_time":0.6741558469,"remaining_time":0.1180366876}, +{"learn":[72.34320795],"iteration":851,"passed_time":0.674995203,"remaining_time":0.1172526879}, +{"learn":[72.23244127],"iteration":852,"passed_time":0.675750342,"remaining_time":0.1164540449}, +{"learn":[72.20557751],"iteration":853,"passed_time":0.676586844,"remaining_time":0.1156694136}, +{"learn":[72.10773374],"iteration":854,"passed_time":0.6773857092,"remaining_time":0.1148782782}, +{"learn":[72.0656456],"iteration":855,"passed_time":0.6782271564,"remaining_time":0.114094288}, +{"learn":[71.9769982],"iteration":856,"passed_time":0.6790042911,"remaining_time":0.1132994325}, +{"learn":[71.8705715],"iteration":857,"passed_time":0.6797565169,"remaining_time":0.1125004958}, +{"learn":[71.79586444],"iteration":858,"passed_time":0.6805495615,"remaining_time":0.1117083681}, +{"learn":[71.73351722],"iteration":859,"passed_time":0.6813806989,"remaining_time":0.1109224393}, +{"learn":[71.71965344],"iteration":860,"passed_time":0.6843146625,"remaining_time":0.1104758863}, +{"learn":[71.66132076],"iteration":861,"passed_time":0.6853144471,"remaining_time":0.1097139138}, +{"learn":[71.55484646],"iteration":862,"passed_time":0.6867685104,"remaining_time":0.1090235063}, +{"learn":[71.53760399],"iteration":863,"passed_time":0.6875069268,"remaining_time":0.1082186829}, +{"learn":[71.50761043],"iteration":864,"passed_time":0.6881854401,"remaining_time":0.1074046641}, +{"learn":[71.36594699],"iteration":865,"passed_time":0.6889109724,"remaining_time":0.1065982336}, +{"learn":[71.19238423],"iteration":866,"passed_time":0.6896490046,"remaining_time":0.1057939073}, +{"learn":[71.17217622],"iteration":867,"passed_time":0.6903313609,"remaining_time":0.1049812669}, +{"learn":[71.07745294],"iteration":868,"passed_time":0.6910408358,"remaining_time":0.1041730144}, +{"learn":[70.97565875],"iteration":869,"passed_time":0.6917777274,"remaining_time":0.1033690857}, +{"learn":[70.89321102],"iteration":870,"passed_time":0.6924913438,"remaining_time":0.1025618638}, +{"learn":[70.85875957],"iteration":871,"passed_time":0.6932283828,"remaining_time":0.1017582947}, +{"learn":[70.75038623],"iteration":872,"passed_time":0.6939115379,"remaining_time":0.1009470393}, +{"learn":[70.6590808],"iteration":873,"passed_time":0.6946233456,"remaining_time":0.1001402077}, +{"learn":[70.58091606],"iteration":874,"passed_time":0.6953081779,"remaining_time":0.0993297397}, +{"learn":[70.44697908],"iteration":875,"passed_time":0.6959603075,"remaining_time":0.09851492938}, +{"learn":[70.36441182],"iteration":876,"passed_time":0.696792626,"remaining_time":0.09772576169}, +{"learn":[70.20024085],"iteration":877,"passed_time":0.6977678203,"remaining_time":0.09695634861}, +{"learn":[70.1359221],"iteration":878,"passed_time":0.6986643202,"remaining_time":0.09617563452}, +{"learn":[70.03250378],"iteration":879,"passed_time":0.6997948602,"remaining_time":0.09542657185}, +{"learn":[69.93876123],"iteration":880,"passed_time":0.7005115811,"remaining_time":0.09462074705}, +{"learn":[69.83200036],"iteration":881,"passed_time":0.7012154264,"remaining_time":0.09381340172}, +{"learn":[69.62171708],"iteration":882,"passed_time":0.7019161623,"remaining_time":0.0930058788}, +{"learn":[69.51234224],"iteration":883,"passed_time":0.7026312778,"remaining_time":0.09220048442}, +{"learn":[69.36816508],"iteration":884,"passed_time":0.7032897044,"remaining_time":0.09138792769}, +{"learn":[69.26007535],"iteration":885,"passed_time":0.7040017632,"remaining_time":0.09058261965}, +{"learn":[69.17361388],"iteration":886,"passed_time":0.7046900981,"remaining_time":0.08977449954}, +{"learn":[69.0210084],"iteration":887,"passed_time":0.7053875471,"remaining_time":0.08896779874}, +{"learn":[68.88465565],"iteration":888,"passed_time":0.7061038987,"remaining_time":0.08816370389}, +{"learn":[68.74682108],"iteration":889,"passed_time":0.7067979961,"remaining_time":0.0873570557}, +{"learn":[68.70150075],"iteration":890,"passed_time":0.7074994733,"remaining_time":0.08655156295}, +{"learn":[68.63792821],"iteration":891,"passed_time":0.7082703894,"remaining_time":0.08575471083}, +{"learn":[68.57925914],"iteration":892,"passed_time":0.7090276718,"remaining_time":0.08495628319}, +{"learn":[68.51565267],"iteration":893,"passed_time":0.709760808,"remaining_time":0.08415508461}, +{"learn":[68.42777149],"iteration":894,"passed_time":0.7104314136,"remaining_time":0.08334670215}, +{"learn":[68.39382409],"iteration":895,"passed_time":0.7111296328,"remaining_time":0.08254183238}, +{"learn":[68.30705352],"iteration":896,"passed_time":0.7120700904,"remaining_time":0.08176501595}, +{"learn":[68.1673343],"iteration":897,"passed_time":0.7129561074,"remaining_time":0.08098165139}, +{"learn":[68.13581243],"iteration":898,"passed_time":0.7137082921,"remaining_time":0.08018302281}, +{"learn":[68.01723987],"iteration":899,"passed_time":0.7144951883,"remaining_time":0.07938835426}, +{"learn":[67.94841632],"iteration":900,"passed_time":0.7154595924,"remaining_time":0.07861320715}, +{"learn":[67.83548288],"iteration":901,"passed_time":0.7161962682,"remaining_time":0.07781289831}, +{"learn":[67.75339725],"iteration":902,"passed_time":0.7169133915,"remaining_time":0.07701063009}, +{"learn":[67.61928604],"iteration":903,"passed_time":0.7176448507,"remaining_time":0.07621007264}, +{"learn":[67.47890298],"iteration":904,"passed_time":0.7183362581,"remaining_time":0.07540546355}, +{"learn":[67.40245754],"iteration":905,"passed_time":0.7190577685,"remaining_time":0.07460422764}, +{"learn":[67.25332785],"iteration":906,"passed_time":0.7197137811,"remaining_time":0.07379645165}, +{"learn":[67.18688177],"iteration":907,"passed_time":0.7204338041,"remaining_time":0.07299549557}, +{"learn":[67.12462282],"iteration":908,"passed_time":0.7211155593,"remaining_time":0.07219088658}, +{"learn":[67.09869793],"iteration":909,"passed_time":0.7218025624,"remaining_time":0.07138706661}, +{"learn":[66.92775555],"iteration":910,"passed_time":0.7225011901,"remaining_time":0.07058463877}, +{"learn":[66.79737891],"iteration":911,"passed_time":0.7231798604,"remaining_time":0.06978051285}, +{"learn":[66.61888136],"iteration":912,"passed_time":0.7238431731,"remaining_time":0.06897519831}, +{"learn":[66.52898648],"iteration":913,"passed_time":0.72457054,"remaining_time":0.06817622149}, +{"learn":[66.42846973],"iteration":914,"passed_time":0.7252475986,"remaining_time":0.06737272774}, +{"learn":[66.37536759],"iteration":915,"passed_time":0.725992162,"remaining_time":0.06657570045}, +{"learn":[66.33675846],"iteration":916,"passed_time":0.7267023506,"remaining_time":0.06577567623}, +{"learn":[66.18297625],"iteration":917,"passed_time":0.7274544107,"remaining_time":0.06497958789}, +{"learn":[66.05337085],"iteration":918,"passed_time":0.7286414421,"remaining_time":0.06422193342}, +{"learn":[65.98687591],"iteration":919,"passed_time":0.7294558679,"remaining_time":0.06343094504}, +{"learn":[65.97236793],"iteration":920,"passed_time":0.730226908,"remaining_time":0.06263618429}, +{"learn":[65.95830318],"iteration":921,"passed_time":0.7311186414,"remaining_time":0.0618516855}, +{"learn":[65.93802431],"iteration":922,"passed_time":0.7318333646,"remaining_time":0.06105218751}, +{"learn":[65.88563313],"iteration":923,"passed_time":0.7326164067,"remaining_time":0.06025849233}, +{"learn":[65.7892447],"iteration":924,"passed_time":0.7332844598,"remaining_time":0.05945549674}, +{"learn":[65.67058669],"iteration":925,"passed_time":0.7339738381,"remaining_time":0.05865449678}, +{"learn":[65.63703386],"iteration":926,"passed_time":0.7346531412,"remaining_time":0.05785294423}, +{"learn":[65.5087068],"iteration":927,"passed_time":0.7353080274,"remaining_time":0.05704976075}, +{"learn":[65.37954195],"iteration":928,"passed_time":0.7360054165,"remaining_time":0.05625014486}, +{"learn":[65.3183101],"iteration":929,"passed_time":0.7367071982,"remaining_time":0.05545107944}, +{"learn":[65.20737401],"iteration":930,"passed_time":0.7374434239,"remaining_time":0.05465477578}, +{"learn":[65.17874923],"iteration":931,"passed_time":0.7381870213,"remaining_time":0.05385913889}, +{"learn":[65.08987741],"iteration":932,"passed_time":0.738877287,"remaining_time":0.05305978374}, +{"learn":[64.99861268],"iteration":933,"passed_time":0.7395721656,"remaining_time":0.05226098815}, +{"learn":[64.87984454],"iteration":934,"passed_time":0.7403285973,"remaining_time":0.05146669393}, +{"learn":[64.80972424],"iteration":935,"passed_time":0.7409844963,"remaining_time":0.05066560658}, +{"learn":[64.73814004],"iteration":936,"passed_time":0.7417510555,"remaining_time":0.04987226947}, +{"learn":[64.65819097],"iteration":937,"passed_time":0.7424225699,"remaining_time":0.04907270718}, +{"learn":[64.5587909],"iteration":938,"passed_time":0.7434650618,"remaining_time":0.04829751733}, +{"learn":[64.44593228],"iteration":939,"passed_time":0.7442668153,"remaining_time":0.04750639247}, +{"learn":[64.39097823],"iteration":940,"passed_time":0.7450567587,"remaining_time":0.04671450453}, +{"learn":[64.27577767],"iteration":941,"passed_time":0.7462359348,"remaining_time":0.04594658622}, +{"learn":[64.15712342],"iteration":942,"passed_time":0.7470644316,"remaining_time":0.04515659873}, +{"learn":[64.06704534],"iteration":943,"passed_time":0.7477343568,"remaining_time":0.04435712286}, +{"learn":[64.04056429],"iteration":944,"passed_time":0.7484645373,"remaining_time":0.04356142809}, +{"learn":[63.9472476],"iteration":945,"passed_time":0.7491311549,"remaining_time":0.04276224351}, +{"learn":[63.8379816],"iteration":946,"passed_time":0.7498115534,"remaining_time":0.04196411017}, +{"learn":[63.72808541],"iteration":947,"passed_time":0.7505355772,"remaining_time":0.04116861816}, +{"learn":[63.63637843],"iteration":948,"passed_time":0.7512215522,"remaining_time":0.040371232}, +{"learn":[63.57742148],"iteration":949,"passed_time":0.7518819121,"remaining_time":0.03957273221}, +{"learn":[63.512264],"iteration":950,"passed_time":0.7526075765,"remaining_time":0.03877788775}, +{"learn":[63.36761033],"iteration":951,"passed_time":0.7532844143,"remaining_time":0.03798072677}, +{"learn":[63.30219425],"iteration":952,"passed_time":0.7539743267,"remaining_time":0.03718446312}, +{"learn":[63.27483452],"iteration":953,"passed_time":0.7546193261,"remaining_time":0.03638625681}, +{"learn":[63.23222472],"iteration":954,"passed_time":0.7557337254,"remaining_time":0.03561048968}, +{"learn":[63.16959836],"iteration":955,"passed_time":0.7564469042,"remaining_time":0.03481554789}, +{"learn":[63.05808935],"iteration":956,"passed_time":0.7572112737,"remaining_time":0.03402307708}, +{"learn":[62.99698818],"iteration":957,"passed_time":0.7579507075,"remaining_time":0.03322957173}, +{"learn":[62.89499542],"iteration":958,"passed_time":0.7590476746,"remaining_time":0.03245146471}, +{"learn":[62.85488529],"iteration":959,"passed_time":0.7599028588,"remaining_time":0.03166261911}, +{"learn":[62.75814145],"iteration":960,"passed_time":0.7607528104,"remaining_time":0.03087342311}, +{"learn":[62.67031583],"iteration":961,"passed_time":0.7616074298,"remaining_time":0.03008428517}, +{"learn":[62.59874788],"iteration":962,"passed_time":0.7623402754,"remaining_time":0.02929033249}, +{"learn":[62.54413822],"iteration":963,"passed_time":0.7630292648,"remaining_time":0.02849486881}, +{"learn":[62.45073587],"iteration":964,"passed_time":0.7637141729,"remaining_time":0.02769947777}, +{"learn":[62.3819076],"iteration":965,"passed_time":0.7643869835,"remaining_time":0.02690388969}, +{"learn":[62.34907098],"iteration":966,"passed_time":0.7650612485,"remaining_time":0.02610860517}, +{"learn":[62.25972654],"iteration":967,"passed_time":0.7657204321,"remaining_time":0.02531307214}, +{"learn":[62.20674847],"iteration":968,"passed_time":0.7663664432,"remaining_time":0.02451739911}, +{"learn":[62.16446083],"iteration":969,"passed_time":0.7670603849,"remaining_time":0.02372351706}, +{"learn":[62.08235998],"iteration":970,"passed_time":0.7677608686,"remaining_time":0.02293003624}, +{"learn":[61.96334733],"iteration":971,"passed_time":0.7685030213,"remaining_time":0.02213794712}, +{"learn":[61.88442894],"iteration":972,"passed_time":0.769243657,"remaining_time":0.02134591854}, +{"learn":[61.79490922],"iteration":973,"passed_time":0.7699819188,"remaining_time":0.02055393213}, +{"learn":[61.64128691],"iteration":974,"passed_time":0.7706759824,"remaining_time":0.01976092263}, +{"learn":[61.55177583],"iteration":975,"passed_time":0.7713573601,"remaining_time":0.01896780394}, +{"learn":[61.51457543],"iteration":976,"passed_time":0.7720570714,"remaining_time":0.01817534559}, +{"learn":[61.42560945],"iteration":977,"passed_time":0.7727304475,"remaining_time":0.0173824845}, +{"learn":[61.40207171],"iteration":978,"passed_time":0.7739470789,"remaining_time":0.01660152059}, +{"learn":[61.30660088],"iteration":979,"passed_time":0.7748018265,"remaining_time":0.01581228217}, +{"learn":[61.268583],"iteration":980,"passed_time":0.7756881515,"remaining_time":0.01502352179}, +{"learn":[61.22934796],"iteration":981,"passed_time":0.7765191894,"remaining_time":0.0142335493}, +{"learn":[61.20616682],"iteration":982,"passed_time":0.7772627708,"remaining_time":0.01344198078}, +{"learn":[61.08147013],"iteration":983,"passed_time":0.7779311251,"remaining_time":0.01264928659}, +{"learn":[61.05608199],"iteration":984,"passed_time":0.7786545169,"remaining_time":0.011857683}, +{"learn":[61.0355597],"iteration":985,"passed_time":0.7793449624,"remaining_time":0.01106574997}, +{"learn":[61.00908742],"iteration":986,"passed_time":0.7800460682,"remaining_time":0.01027416301}, +{"learn":[60.92877525],"iteration":987,"passed_time":0.7807541059,"remaining_time":0.009482843392}, +{"learn":[60.85971462],"iteration":988,"passed_time":0.7814405784,"remaining_time":0.008691452338}, +{"learn":[60.74474777],"iteration":989,"passed_time":0.7821448923,"remaining_time":0.007900453458}, +{"learn":[60.62859732],"iteration":990,"passed_time":0.7828729334,"remaining_time":0.007109845005}, +{"learn":[60.53948158],"iteration":991,"passed_time":0.7835951532,"remaining_time":0.006319315752}, +{"learn":[60.47245961],"iteration":992,"passed_time":0.7843303191,"remaining_time":0.005529015341}, +{"learn":[60.3302556],"iteration":993,"passed_time":0.7850193399,"remaining_time":0.004738547323}, +{"learn":[60.24396727],"iteration":994,"passed_time":0.7857177643,"remaining_time":0.003948330474}, +{"learn":[60.1186116],"iteration":995,"passed_time":0.7864366727,"remaining_time":0.003158380212}, +{"learn":[60.05543163],"iteration":996,"passed_time":0.7871567627,"remaining_time":0.002368576016}, +{"learn":[60.02251974],"iteration":997,"passed_time":0.7878706109,"remaining_time":0.00157889902}, +{"learn":[59.94975844],"iteration":998,"passed_time":0.7885718143,"remaining_time":0.0007893611754}, +{"learn":[59.92150919],"iteration":999,"passed_time":0.7896422748,"remaining_time":0} +]} \ No newline at end of file diff --git a/catboost_info/learn/events.out.tfevents b/catboost_info/learn/events.out.tfevents new file mode 100644 index 0000000..75c9f5d Binary files /dev/null and b/catboost_info/learn/events.out.tfevents differ diff --git a/catboost_info/learn_error.tsv b/catboost_info/learn_error.tsv new file mode 100644 index 0000000..7382838 --- /dev/null +++ b/catboost_info/learn_error.tsv @@ -0,0 +1,1001 @@ +iter RMSE +0 3662.575683 +1 3555.636322 +2 3450.779167 +3 3350.517801 +4 3255.662239 +5 3168.341562 +6 3083.09696 +7 3001.252663 +8 2917.435051 +9 2837.145765 +10 2766.450459 +11 2688.914783 +12 2614.472366 +13 2548.570089 +14 2490.007404 +15 2428.190922 +16 2363.192483 +17 2309.161851 +18 2251.326317 +19 2194.518603 +20 2134.386896 +21 2077.449324 +22 2027.220285 +23 1984.605605 +24 1931.101868 +25 1893.116137 +26 1842.931837 +27 1795.250205 +28 1751.063766 +29 1712.884824 +30 1667.80013 +31 1630.782543 +32 1590.474703 +33 1551.389736 +34 1516.435531 +35 1484.889881 +36 1452.681436 +37 1419.998505 +38 1389.412263 +39 1363.812251 +40 1340.371116 +41 1309.517514 +42 1275.195616 +43 1246.278496 +44 1218.451233 +45 1198.54566 +46 1176.814775 +47 1153.401899 +48 1129.163213 +49 1106.535124 +50 1080.936692 +51 1064.986137 +52 1045.057952 +53 1025.324028 +54 1006.478968 +55 987.1865749 +56 975.2369814 +57 955.5744159 +58 941.1777923 +59 926.5090454 +60 912.6126438 +61 895.292879 +62 878.3101311 +63 862.0548494 +64 846.6412955 +65 831.7313933 +66 816.1886926 +67 804.041348 +68 790.9289148 +69 780.494202 +70 765.6299333 +71 754.0364757 +72 742.6843646 +73 733.6486191 +74 724.4082592 +75 714.3612708 +76 703.7413048 +77 692.6766437 +78 682.658587 +79 672.2667398 +80 662.2697796 +81 653.6006303 +82 647.5304061 +83 640.5592447 +84 630.0335231 +85 625.4874873 +86 617.861395 +87 611.4852683 +88 604.7049078 +89 599.1922856 +90 591.5441643 +91 585.3771005 +92 579.0166045 +93 571.6345746 +94 563.7088364 +95 558.8177793 +96 552.8642371 +97 545.7509079 +98 539.9432238 +99 534.1401375 +100 527.7113585 +101 523.0913521 +102 518.1808209 +103 515.1524114 +104 510.9040838 +105 507.4108072 +106 503.8051705 +107 499.9996939 +108 494.3140036 +109 490.6963987 +110 486.4031605 +111 482.2785595 +112 479.8949034 +113 477.481256 +114 473.4848601 +115 470.8859057 +116 467.34591 +117 461.7794319 +118 458.8907088 +119 455.6145374 +120 452.7000667 +121 449.6290258 +122 446.554963 +123 444.1306578 +124 442.339996 +125 438.6627661 +126 436.8974745 +127 435.2446235 +128 433.1007063 +129 428.7936747 +130 425.4447815 +131 422.4564141 +132 420.3704177 +133 418.3308567 +134 416.355286 +135 413.2683151 +136 409.2783872 +137 407.2469786 +138 404.9461056 +139 402.902743 +140 401.1939857 +141 399.2151519 +142 396.7982124 +143 395.1551058 +144 393.8379304 +145 392.1757867 +146 390.0361905 +147 387.759463 +148 385.5603947 +149 383.4831287 +150 380.7027889 +151 379.1509263 +152 377.5054091 +153 376.3544887 +154 374.7216306 +155 371.8227673 +156 368.8293011 +157 367.3554223 +158 365.6957606 +159 363.4291725 +160 362.1293855 +161 359.8814575 +162 357.4070103 +163 355.2431096 +164 352.552065 +165 349.7138766 +166 347.4891863 +167 345.5489662 +168 341.5699121 +169 338.2907206 +170 336.0732474 +171 334.6253265 +172 333.6199762 +173 331.927306 +174 330.7664346 +175 327.600505 +176 325.6325653 +177 324.3582431 +178 323.0986648 +179 321.3015869 +180 319.9619277 +181 318.5357961 +182 317.3093454 +183 315.6279442 +184 313.5985253 +185 312.2128824 +186 310.5408064 +187 308.8097527 +188 307.444303 +189 305.5703591 +190 304.1410151 +191 302.5345375 +192 301.645134 +193 300.4121176 +194 298.5525362 +195 296.9420221 +196 295.9578764 +197 295.0625029 +198 294.1030487 +199 293.6409424 +200 292.418178 +201 290.7077158 +202 289.7255389 +203 288.2508488 +204 286.7868578 +205 286.086537 +206 285.2264005 +207 284.0864334 +208 282.8510716 +209 282.0865003 +210 281.1298771 +211 280.1903001 +212 279.0970471 +213 277.9367672 +214 276.7751341 +215 275.9816879 +216 275.0941078 +217 274.0984843 +218 273.783232 +219 272.2569337 +220 271.4275366 +221 268.932575 +222 267.6229378 +223 266.5785284 +224 265.398546 +225 263.8963923 +226 262.8240575 +227 261.7816442 +228 260.8591568 +229 259.7074649 +230 258.3753881 +231 257.5815782 +232 256.6962939 +233 255.5210063 +234 254.8841884 +235 254.0187639 +236 252.9263803 +237 251.9325468 +238 250.643096 +239 249.6721803 +240 248.7723228 +241 248.0043812 +242 247.3321548 +243 246.7967875 +244 246.0910573 +245 243.8962219 +246 242.8598926 +247 242.4047449 +248 241.8658878 +249 241.2068841 +250 240.3944328 +251 239.8042636 +252 239.2380851 +253 238.7913906 +254 237.7871852 +255 237.4230529 +256 236.9503851 +257 236.5353735 +258 236.0385457 +259 235.1681646 +260 233.9263754 +261 233.4651113 +262 232.8769228 +263 232.3156672 +264 231.9137269 +265 231.4086531 +266 230.7801018 +267 230.3125671 +268 229.8171138 +269 228.9896699 +270 228.1907234 +271 227.5037554 +272 227.0812216 +273 226.531358 +274 225.9401478 +275 225.5392312 +276 224.4404722 +277 222.9875036 +278 222.0576336 +279 221.4001301 +280 220.6016936 +281 220.0410548 +282 219.6337237 +283 219.3044009 +284 218.776607 +285 217.8416864 +286 217.4529483 +287 217.0905909 +288 216.0690431 +289 215.7059666 +290 215.2980626 +291 214.6205749 +292 214.3146893 +293 213.4974494 +294 213.0350907 +295 212.6353058 +296 211.3935718 +297 210.420639 +298 209.6471807 +299 209.321792 +300 208.5385184 +301 207.4529122 +302 207.1634334 +303 206.7215229 +304 205.8254902 +305 204.9402971 +306 204.2401925 +307 203.830478 +308 203.4878609 +309 202.7358657 +310 201.6776776 +311 201.2502754 +312 200.4058849 +313 200.0863728 +314 199.4424797 +315 198.434697 +316 197.6092453 +317 197.4347459 +318 197.1730434 +319 196.3205483 +320 196.1442192 +321 195.1358489 +322 194.7654394 +323 194.5257029 +324 194.3460045 +325 193.5423137 +326 193.361594 +327 192.8609113 +328 192.0152368 +329 191.2984363 +330 190.7528647 +331 190.0073779 +332 189.1785006 +333 188.5504856 +334 188.0987857 +335 187.3100528 +336 187.0695173 +337 186.3384284 +338 185.8397918 +339 185.5281498 +340 185.0772929 +341 184.3896485 +342 183.9436706 +343 182.943391 +344 182.1191152 +345 181.9430507 +346 181.2225343 +347 180.7098556 +348 180.1134451 +349 179.9030133 +350 179.5222111 +351 178.6909028 +352 178.3826558 +353 178.0647718 +354 177.0587936 +355 176.7722999 +356 176.4841216 +357 176.0194343 +358 175.7636755 +359 175.0494995 +360 174.8436133 +361 174.5320971 +362 173.8910897 +363 173.2930522 +364 172.7834317 +365 172.5451464 +366 172.2138011 +367 171.2132824 +368 171.050042 +369 170.643188 +370 170.2444386 +371 169.6615289 +372 169.2398256 +373 169.1089687 +374 168.3913973 +375 168.0109707 +376 167.6623955 +377 167.4718941 +378 167.1617279 +379 166.8382257 +380 166.5470885 +381 165.9805333 +382 165.8072213 +383 165.2007912 +384 164.7921382 +385 164.5110541 +386 163.8643792 +387 163.164661 +388 162.7088389 +389 162.0327601 +390 161.7854959 +391 161.3755056 +392 160.7323132 +393 160.6155798 +394 160.3386438 +395 159.8353012 +396 159.1391019 +397 158.4855614 +398 158.0854374 +399 157.8456813 +400 157.4880514 +401 156.9881906 +402 156.5677653 +403 156.3574827 +404 156.2451016 +405 155.9302814 +406 155.3032846 +407 154.4769299 +408 154.2897312 +409 154.1934428 +410 153.5724007 +411 153.0736612 +412 152.9564476 +413 152.3993793 +414 151.7975618 +415 151.2709445 +416 150.9104339 +417 150.3215665 +418 149.8387959 +419 149.54926 +420 149.1502195 +421 148.9274928 +422 148.6005806 +423 148.2908845 +424 147.9269959 +425 147.4632561 +426 146.8663669 +427 146.5109632 +428 146.1289295 +429 145.7040286 +430 145.2840842 +431 145.0408079 +432 144.7811929 +433 144.3322422 +434 144.2214218 +435 143.9688619 +436 143.6083057 +437 143.2156197 +438 142.8357081 +439 142.5387687 +440 142.2042503 +441 142.0426301 +442 141.8952894 +443 141.6464236 +444 141.5411481 +445 141.0823141 +446 140.4287564 +447 140.1803918 +448 139.9958853 +449 139.7426692 +450 139.1196939 +451 138.6960149 +452 138.4218897 +453 138.2403828 +454 138.0915511 +455 137.9493266 +456 137.7770819 +457 137.3442044 +458 137.1171304 +459 136.6867566 +460 136.518458 +461 136.0988944 +462 136.0065977 +463 135.9112619 +464 135.6242991 +465 135.5102452 +466 135.1636411 +467 135.0992177 +468 134.8365283 +469 134.7463366 +470 134.587287 +471 134.4480214 +472 133.9584806 +473 133.8098951 +474 133.4703971 +475 133.0607757 +476 132.8214312 +477 132.6378881 +478 132.3500025 +479 132.029824 +480 131.802763 +481 131.4477917 +482 131.340861 +483 131.138128 +484 130.8254085 +485 130.6226731 +486 130.5353426 +487 130.2002559 +488 129.8650409 +489 129.7614838 +490 129.7035868 +491 129.55131 +492 128.9822814 +493 128.7051594 +494 128.6011681 +495 128.4308561 +496 128.307177 +497 128.0653125 +498 127.6727011 +499 127.4025463 +500 127.2504625 +501 126.7573321 +502 126.5927506 +503 126.3386114 +504 125.9602791 +505 125.7382376 +506 125.5238531 +507 125.4034315 +508 125.108111 +509 124.888637 +510 124.5410307 +511 124.4532414 +512 124.2402559 +513 124.0493354 +514 123.8903048 +515 123.2513784 +516 122.9060997 +517 122.2659462 +518 121.9153759 +519 121.768553 +520 121.5586427 +521 121.328656 +522 121.2414438 +523 120.9509013 +524 120.7287231 +525 120.5182445 +526 120.1552011 +527 119.8518006 +528 119.5758902 +529 119.4684522 +530 119.1905877 +531 119.120799 +532 118.8522754 +533 118.5679242 +534 118.2441926 +535 118.0571382 +536 117.670673 +537 117.4626467 +538 117.3972691 +539 117.0498585 +540 116.8864118 +541 116.7032135 +542 116.4747407 +543 116.2745499 +544 116.1634434 +545 115.8837329 +546 115.7847364 +547 115.4726518 +548 115.2380594 +549 114.9832854 +550 114.7923225 +551 114.7061856 +552 114.2484883 +553 113.8249474 +554 113.3587873 +555 113.2361388 +556 112.9708343 +557 112.9087039 +558 112.7109537 +559 112.423592 +560 112.1257099 +561 112.030136 +562 111.7072661 +563 111.4030351 +564 111.239361 +565 110.9951902 +566 110.7555032 +567 110.4762113 +568 110.3324024 +569 110.1500777 +570 109.8347114 +571 109.6719111 +572 109.3507972 +573 109.0393228 +574 108.9092308 +575 108.5653394 +576 108.4450533 +577 108.2495707 +578 108.1288216 +579 107.9123132 +580 107.6536187 +581 107.4904367 +582 107.1957928 +583 106.9065549 +584 106.7433792 +585 106.6253206 +586 106.4358702 +587 106.1281316 +588 105.8891673 +589 105.4787768 +590 105.2468209 +591 105.0982909 +592 104.8447079 +593 104.5779736 +594 104.4110502 +595 104.0919646 +596 103.8919657 +597 103.7196598 +598 103.4492347 +599 103.2740587 +600 103.1276456 +601 102.9634171 +602 102.8259149 +603 102.7001608 +604 102.3681297 +605 102.1013055 +606 102.0398696 +607 101.9173139 +608 101.679954 +609 101.4066016 +610 101.3379424 +611 100.9210462 +612 100.6453409 +613 100.4676302 +614 100.3387898 +615 100.2590426 +616 100.0247543 +617 99.99480267 +618 99.81066888 +619 99.68847078 +620 99.31388979 +621 99.14994819 +622 98.97268473 +623 98.8268423 +624 98.75382222 +625 98.5446163 +626 98.31367241 +627 97.98978586 +628 97.88782136 +629 97.66350146 +630 97.55228588 +631 97.22287279 +632 96.94093467 +633 96.90730378 +634 96.72645055 +635 96.51649102 +636 96.48646053 +637 96.28440839 +638 96.12574304 +639 96.10080732 +640 95.89441847 +641 95.66836282 +642 95.45630098 +643 95.38867496 +644 95.36114208 +645 95.32338394 +646 95.13865864 +647 95.04087212 +648 94.80557884 +649 94.73138699 +650 94.58108436 +651 94.36301263 +652 94.31236028 +653 94.27889282 +654 94.10901123 +655 93.96474618 +656 93.7421906 +657 93.60514066 +658 93.46612437 +659 93.33229342 +660 93.21079587 +661 93.10705876 +662 92.81810673 +663 92.62650619 +664 92.42888654 +665 92.09176732 +666 92.04854396 +667 91.88550859 +668 91.85350035 +669 91.77807671 +670 91.65435283 +671 91.56783533 +672 91.26580867 +673 91.16238764 +674 91.10065046 +675 90.85117159 +676 90.69540399 +677 90.57391813 +678 90.51437297 +679 90.33889177 +680 90.24276011 +681 90.10789257 +682 89.95880505 +683 89.87212108 +684 89.7088169 +685 89.65178757 +686 89.45790266 +687 89.28717191 +688 89.01579809 +689 88.8669891 +690 88.6699944 +691 88.56760592 +692 88.44988882 +693 88.27053152 +694 88.2414795 +695 88.15186789 +696 88.05019566 +697 87.99223331 +698 87.73657542 +699 87.66230383 +700 87.55509554 +701 87.3960713 +702 87.35367605 +703 87.31612871 +704 87.28308304 +705 87.10333984 +706 86.95975665 +707 86.74618961 +708 86.59571901 +709 86.5503641 +710 86.37323419 +711 86.33957217 +712 86.14207856 +713 85.97356517 +714 85.82683155 +715 85.66753612 +716 85.59529512 +717 85.54704191 +718 85.44003169 +719 85.35282701 +720 85.11502108 +721 84.99295044 +722 84.84849866 +723 84.719048 +724 84.61907861 +725 84.50627558 +726 84.40820784 +727 84.26996548 +728 84.13394306 +729 84.07218013 +730 83.96978134 +731 83.87239832 +732 83.68730916 +733 83.59803147 +734 83.50674817 +735 83.40334104 +736 83.34292332 +737 83.2841552 +738 83.1251919 +739 82.95627663 +740 82.86885815 +741 82.71013967 +742 82.65586453 +743 82.49744791 +744 82.41674243 +745 82.29664345 +746 82.15066517 +747 82.0370734 +748 81.86493678 +749 81.6952753 +750 81.52076307 +751 81.47245048 +752 81.33248962 +753 81.17612462 +754 81.03819438 +755 80.96675016 +756 80.82905315 +757 80.70283152 +758 80.59212139 +759 80.47676188 +760 80.39467719 +761 80.29316384 +762 80.25419775 +763 80.18231027 +764 80.03530867 +765 79.882003 +766 79.77233594 +767 79.71948209 +768 79.68256007 +769 79.5728087 +770 79.48980365 +771 79.45344299 +772 79.42383769 +773 79.35304737 +774 79.31777929 +775 79.27584682 +776 79.22300776 +777 79.16336216 +778 79.11542806 +779 79.05297899 +780 79.0055555 +781 78.96247249 +782 78.93486725 +783 78.86074492 +784 78.7980841 +785 78.68675842 +786 78.56844849 +787 78.45522467 +788 78.42915368 +789 78.33271787 +790 78.28517094 +791 78.22550739 +792 78.08128623 +793 78.00227098 +794 77.84685715 +795 77.7664605 +796 77.67018672 +797 77.58910134 +798 77.44372873 +799 77.37497353 +800 77.34882375 +801 77.19068707 +802 77.08922719 +803 76.9729166 +804 76.90348413 +805 76.82666583 +806 76.68116626 +807 76.63374313 +808 76.54946199 +809 76.49248776 +810 76.30567098 +811 76.20513103 +812 76.14947506 +813 76.07795348 +814 76.03071793 +815 75.85114002 +816 75.72457319 +817 75.62457528 +818 75.57980812 +819 75.50199726 +820 75.42896303 +821 75.28107282 +822 75.24370116 +823 75.21163781 +824 75.11238047 +825 75.07821544 +826 74.99763688 +827 74.97260021 +828 74.82280395 +829 74.7142409 +830 74.68809134 +831 74.66735038 +832 74.62791607 +833 74.4614704 +834 74.42822033 +835 74.3786069 +836 74.24628149 +837 74.17289785 +838 74.04392916 +839 73.8944423 +840 73.75377577 +841 73.63426609 +842 73.55942885 +843 73.45438013 +844 73.2753604 +845 73.10596468 +846 73.05334097 +847 72.9262698 +848 72.79142922 +849 72.66419711 +850 72.46903723 +851 72.34320795 +852 72.23244127 +853 72.20557751 +854 72.10773374 +855 72.0656456 +856 71.9769982 +857 71.8705715 +858 71.79586444 +859 71.73351722 +860 71.71965344 +861 71.66132076 +862 71.55484646 +863 71.53760399 +864 71.50761043 +865 71.36594699 +866 71.19238423 +867 71.17217622 +868 71.07745294 +869 70.97565875 +870 70.89321102 +871 70.85875957 +872 70.75038623 +873 70.6590808 +874 70.58091606 +875 70.44697908 +876 70.36441182 +877 70.20024085 +878 70.1359221 +879 70.03250378 +880 69.93876123 +881 69.83200036 +882 69.62171708 +883 69.51234224 +884 69.36816508 +885 69.26007535 +886 69.17361388 +887 69.0210084 +888 68.88465565 +889 68.74682108 +890 68.70150075 +891 68.63792821 +892 68.57925914 +893 68.51565267 +894 68.42777149 +895 68.39382409 +896 68.30705352 +897 68.1673343 +898 68.13581243 +899 68.01723987 +900 67.94841632 +901 67.83548288 +902 67.75339725 +903 67.61928604 +904 67.47890298 +905 67.40245754 +906 67.25332785 +907 67.18688177 +908 67.12462282 +909 67.09869793 +910 66.92775555 +911 66.79737891 +912 66.61888136 +913 66.52898648 +914 66.42846973 +915 66.37536759 +916 66.33675846 +917 66.18297625 +918 66.05337085 +919 65.98687591 +920 65.97236793 +921 65.95830318 +922 65.93802431 +923 65.88563313 +924 65.7892447 +925 65.67058669 +926 65.63703386 +927 65.5087068 +928 65.37954195 +929 65.3183101 +930 65.20737401 +931 65.17874923 +932 65.08987741 +933 64.99861268 +934 64.87984454 +935 64.80972424 +936 64.73814004 +937 64.65819097 +938 64.5587909 +939 64.44593228 +940 64.39097823 +941 64.27577767 +942 64.15712342 +943 64.06704534 +944 64.04056429 +945 63.9472476 +946 63.8379816 +947 63.72808541 +948 63.63637843 +949 63.57742148 +950 63.512264 +951 63.36761033 +952 63.30219425 +953 63.27483452 +954 63.23222472 +955 63.16959836 +956 63.05808935 +957 62.99698818 +958 62.89499542 +959 62.85488529 +960 62.75814145 +961 62.67031583 +962 62.59874788 +963 62.54413822 +964 62.45073587 +965 62.3819076 +966 62.34907098 +967 62.25972654 +968 62.20674847 +969 62.16446083 +970 62.08235998 +971 61.96334733 +972 61.88442894 +973 61.79490922 +974 61.64128691 +975 61.55177583 +976 61.51457543 +977 61.42560945 +978 61.40207171 +979 61.30660088 +980 61.268583 +981 61.22934796 +982 61.20616682 +983 61.08147013 +984 61.05608199 +985 61.0355597 +986 61.00908742 +987 60.92877525 +988 60.85971462 +989 60.74474777 +990 60.62859732 +991 60.53948158 +992 60.47245961 +993 60.3302556 +994 60.24396727 +995 60.1186116 +996 60.05543163 +997 60.02251974 +998 59.94975844 +999 59.92150919 diff --git a/catboost_info/time_left.tsv b/catboost_info/time_left.tsv new file mode 100644 index 0000000..838991c --- /dev/null +++ b/catboost_info/time_left.tsv @@ -0,0 +1,1001 @@ +iter Passed Remaining +0 1 1047 +1 2 1015 +2 2 965 +3 3 961 +4 4 923 +5 5 884 +6 6 858 +7 6 839 +8 7 828 +9 8 820 +10 9 818 +11 9 810 +12 10 799 +13 11 794 +14 11 786 +15 12 779 +16 13 775 +17 14 770 +18 14 765 +19 15 759 +20 16 766 +21 17 769 +22 18 771 +23 18 770 +24 19 769 +25 20 768 +26 21 765 +27 21 762 +28 22 759 +29 23 757 +30 24 753 +31 24 751 +32 25 749 +33 26 748 +34 27 744 +35 27 742 +36 29 760 +37 29 757 +38 30 755 +39 31 757 +40 32 757 +41 33 758 +42 34 756 +43 34 757 +44 35 753 +45 36 753 +46 37 751 +47 37 749 +48 38 747 +49 39 745 +50 39 743 +51 40 741 +52 41 738 +53 42 737 +54 42 735 +55 43 733 +56 44 732 +57 45 731 +58 45 729 +59 46 727 +60 47 729 +61 48 731 +62 49 731 +63 50 732 +64 50 731 +65 51 730 +66 52 728 +67 53 727 +68 53 726 +69 54 724 +70 55 723 +71 56 721 +72 56 720 +73 57 720 +74 58 719 +75 59 717 +76 59 716 +77 60 714 +78 61 713 +79 61 712 +80 62 712 +81 63 711 +82 64 714 +83 65 714 +84 66 714 +85 67 713 +86 67 712 +87 68 710 +88 69 709 +89 70 707 +90 70 706 +91 71 705 +92 72 703 +93 72 702 +94 73 700 +95 74 699 +96 74 697 +97 75 696 +98 76 695 +99 77 694 +100 77 693 +101 80 705 +102 80 705 +103 81 704 +104 82 703 +105 83 702 +106 84 702 +107 84 701 +108 85 699 +109 86 698 +110 87 697 +111 87 695 +112 88 694 +113 89 692 +114 89 692 +115 90 691 +116 91 690 +117 92 689 +118 92 687 +119 93 687 +120 94 687 +121 95 687 +122 96 687 +123 97 686 +124 97 685 +125 98 684 +126 99 682 +127 99 681 +128 101 684 +129 102 683 +130 102 681 +131 103 680 +132 104 679 +133 105 678 +134 105 677 +135 106 676 +136 107 674 +137 107 673 +138 108 673 +139 109 673 +140 110 672 +141 111 672 +142 112 671 +143 113 671 +144 113 671 +145 115 673 +146 115 672 +147 116 672 +148 117 671 +149 118 670 +150 119 670 +151 119 668 +152 120 667 +153 121 666 +154 122 665 +155 122 664 +156 123 663 +157 124 662 +158 125 661 +159 125 661 +160 126 660 +161 127 659 +162 128 658 +163 128 657 +164 129 656 +165 130 655 +166 131 654 +167 131 653 +168 132 652 +169 133 650 +170 133 649 +171 134 648 +172 135 646 +173 136 645 +174 136 644 +175 137 643 +176 138 642 +177 138 641 +178 139 641 +179 140 642 +180 141 641 +181 142 641 +182 143 640 +183 144 639 +184 144 638 +185 145 637 +186 146 636 +187 146 634 +188 147 633 +189 148 632 +190 149 634 +191 150 633 +192 151 632 +193 151 631 +194 152 629 +195 153 628 +196 154 627 +197 154 627 +198 155 626 +199 156 624 +200 157 624 +201 158 625 +202 159 624 +203 159 623 +204 160 622 +205 161 621 +206 161 620 +207 162 619 +208 163 618 +209 164 617 +210 164 616 +211 165 615 +212 166 614 +213 166 613 +214 167 612 +215 168 611 +216 169 610 +217 169 608 +218 170 608 +219 171 607 +220 172 606 +221 173 606 +222 173 606 +223 174 605 +224 175 604 +225 176 603 +226 176 602 +227 177 601 +228 178 601 +229 179 600 +230 180 600 +231 181 599 +232 181 598 +233 182 598 +234 183 597 +235 184 596 +236 185 596 +237 186 595 +238 187 595 +239 187 595 +240 188 594 +241 189 593 +242 190 593 +243 191 592 +244 191 591 +245 192 591 +246 193 590 +247 194 589 +248 195 589 +249 196 588 +250 197 587 +251 197 587 +252 198 586 +253 199 585 +254 200 584 +255 201 585 +256 202 585 +257 203 584 +258 204 584 +259 205 583 +260 205 582 +261 206 582 +262 207 581 +263 208 580 +264 208 579 +265 209 578 +266 210 577 +267 211 577 +268 212 576 +269 212 575 +270 213 575 +271 214 574 +272 215 573 +273 216 572 +274 217 572 +275 218 572 +276 219 573 +277 220 572 +278 222 573 +279 222 573 +280 223 572 +281 224 571 +282 225 570 +283 225 569 +284 226 568 +285 227 566 +286 227 565 +287 228 564 +288 229 563 +289 229 562 +290 230 562 +291 231 561 +292 234 565 +293 234 564 +294 235 563 +295 236 562 +296 237 561 +297 237 560 +298 238 559 +299 239 558 +300 239 557 +301 240 556 +302 241 555 +303 241 554 +304 242 552 +305 243 552 +306 244 551 +307 244 550 +308 245 549 +309 246 548 +310 247 547 +311 248 547 +312 248 546 +313 249 545 +314 250 544 +315 251 543 +316 251 542 +317 252 541 +318 253 540 +319 253 539 +320 254 538 +321 255 537 +322 255 536 +323 256 535 +324 257 533 +325 257 532 +326 258 531 +327 259 530 +328 259 529 +329 260 528 +330 261 528 +331 262 527 +332 262 526 +333 264 528 +334 265 527 +335 266 526 +336 267 525 +337 268 525 +338 268 524 +339 269 523 +340 270 522 +341 270 521 +342 271 520 +343 272 519 +344 273 518 +345 273 517 +346 274 516 +347 275 515 +348 275 514 +349 276 513 +350 277 512 +351 278 512 +352 279 511 +353 279 510 +354 280 510 +355 281 509 +356 282 508 +357 283 507 +358 283 506 +359 284 506 +360 285 505 +361 286 504 +362 286 503 +363 287 502 +364 288 501 +365 288 500 +366 289 499 +367 290 498 +368 290 497 +369 291 496 +370 292 495 +371 292 494 +372 293 493 +373 296 496 +374 297 495 +375 297 494 +376 298 494 +377 299 493 +378 300 492 +379 301 491 +380 301 490 +381 302 489 +382 303 488 +383 304 487 +384 304 486 +385 305 485 +386 306 484 +387 306 483 +388 307 483 +389 308 482 +390 309 481 +391 310 481 +392 311 480 +393 312 480 +394 312 479 +395 313 478 +396 314 477 +397 315 476 +398 315 475 +399 316 474 +400 317 473 +401 317 473 +402 318 472 +403 319 471 +404 320 470 +405 320 469 +406 321 468 +407 322 467 +408 322 466 +409 323 465 +410 324 464 +411 325 464 +412 326 463 +413 327 462 +414 327 462 +415 328 461 +416 329 460 +417 330 459 +418 330 458 +419 331 457 +420 332 456 +421 332 455 +422 333 454 +423 334 454 +424 334 453 +425 335 452 +426 336 451 +427 337 450 +428 337 449 +429 338 448 +430 339 447 +431 339 446 +432 340 446 +433 341 445 +434 342 444 +435 343 444 +436 344 443 +437 344 442 +438 345 441 +439 346 440 +440 346 439 +441 347 438 +442 348 437 +443 348 436 +444 349 436 +445 350 435 +446 351 434 +447 351 433 +448 352 432 +449 353 431 +450 353 430 +451 354 429 +452 355 429 +453 356 428 +454 357 427 +455 357 426 +456 358 426 +457 359 425 +458 360 424 +459 361 423 +460 361 422 +461 362 422 +462 363 421 +463 364 420 +464 365 420 +465 366 419 +466 367 419 +467 368 418 +468 368 417 +469 369 416 +470 370 415 +471 371 415 +472 371 414 +473 372 413 +474 373 412 +475 374 412 +476 375 411 +477 376 410 +478 376 410 +479 377 409 +480 378 408 +481 379 407 +482 379 406 +483 380 405 +484 381 404 +485 381 403 +486 382 402 +487 383 402 +488 383 401 +489 384 400 +490 385 399 +491 386 398 +492 387 398 +493 388 397 +494 389 396 +495 389 396 +496 390 395 +497 391 394 +498 392 393 +499 392 392 +500 393 391 +501 394 391 +502 394 390 +503 395 389 +504 396 388 +505 396 387 +506 397 386 +507 398 385 +508 399 384 +509 399 384 +510 400 383 +511 401 382 +512 402 381 +513 403 381 +514 403 380 +515 405 380 +516 405 379 +517 406 378 +518 407 377 +519 408 376 +520 409 376 +521 410 376 +522 411 375 +523 412 374 +524 413 373 +525 413 373 +526 414 372 +527 415 371 +528 416 370 +529 417 369 +530 420 371 +531 420 370 +532 421 369 +533 422 368 +534 423 367 +535 424 367 +536 424 366 +537 425 365 +538 426 364 +539 427 363 +540 427 363 +541 428 362 +542 429 361 +543 430 360 +544 431 359 +545 431 359 +546 432 358 +547 435 358 +548 435 358 +549 436 357 +550 437 356 +551 438 355 +552 439 354 +553 439 354 +554 440 353 +555 441 352 +556 442 351 +557 443 350 +558 443 350 +559 444 349 +560 445 348 +561 446 347 +562 446 346 +563 447 346 +564 448 345 +565 449 344 +566 450 343 +567 451 343 +568 451 342 +569 453 341 +570 453 341 +571 454 340 +572 455 339 +573 456 338 +574 456 337 +575 457 336 +576 458 335 +577 458 335 +578 459 334 +579 460 333 +580 461 332 +581 461 331 +582 462 330 +583 463 329 +584 464 329 +585 465 328 +586 466 327 +587 467 327 +588 467 326 +589 468 325 +590 469 324 +591 470 324 +592 470 323 +593 471 322 +594 472 321 +595 472 320 +596 473 319 +597 474 318 +598 475 318 +599 475 317 +600 476 316 +601 477 315 +602 477 314 +603 478 313 +604 479 312 +605 479 312 +606 481 311 +607 482 310 +608 482 310 +609 483 309 +610 484 308 +611 485 307 +612 485 306 +613 486 305 +614 487 305 +615 488 304 +616 488 303 +617 489 302 +618 490 301 +619 490 300 +620 491 300 +621 492 299 +622 492 298 +623 493 297 +624 494 296 +625 494 295 +626 496 295 +627 496 294 +628 497 293 +629 498 292 +630 499 292 +631 500 291 +632 500 290 +633 501 289 +634 502 288 +635 502 287 +636 503 287 +637 504 286 +638 505 285 +639 505 284 +640 506 283 +641 507 282 +642 507 281 +643 508 281 +644 509 280 +645 509 279 +646 510 278 +647 511 277 +648 512 276 +649 512 276 +650 513 275 +651 514 274 +652 515 273 +653 515 272 +654 516 272 +655 517 271 +656 518 270 +657 518 269 +658 519 268 +659 520 268 +660 521 267 +661 521 266 +662 522 265 +663 523 264 +664 524 263 +665 524 263 +666 525 262 +667 526 261 +668 527 260 +669 528 260 +670 528 259 +671 529 258 +672 530 257 +673 531 256 +674 531 256 +675 532 255 +676 533 254 +677 534 253 +678 534 252 +679 535 251 +680 536 251 +681 536 250 +682 537 249 +683 538 248 +684 538 247 +685 539 246 +686 540 246 +687 540 245 +688 541 244 +689 542 243 +690 543 243 +691 544 242 +692 544 241 +693 545 240 +694 546 239 +695 547 238 +696 547 238 +697 548 237 +698 549 236 +699 549 235 +700 550 234 +701 551 234 +702 552 233 +703 552 232 +704 553 231 +705 554 230 +706 554 229 +707 555 229 +708 556 228 +709 557 227 +710 558 227 +711 559 226 +712 560 225 +713 562 225 +714 563 224 +715 563 223 +716 564 222 +717 565 222 +718 565 221 +719 566 220 +720 567 219 +721 568 218 +722 568 217 +723 569 217 +724 570 216 +725 571 215 +726 571 214 +727 572 213 +728 573 213 +729 574 212 +730 575 211 +731 576 211 +732 577 210 +733 577 209 +734 578 208 +735 579 207 +736 579 206 +737 580 206 +738 581 205 +739 582 204 +740 582 203 +741 583 202 +742 584 202 +743 584 201 +744 585 200 +745 586 199 +746 587 198 +747 587 198 +748 590 197 +749 591 197 +750 592 196 +751 592 195 +752 593 194 +753 594 193 +754 595 193 +755 595 192 +756 596 191 +757 597 190 +758 597 189 +759 598 189 +760 599 188 +761 599 187 +762 600 186 +763 601 185 +764 602 184 +765 602 184 +766 603 183 +767 604 182 +768 605 181 +769 605 180 +770 606 180 +771 607 179 +772 608 178 +773 608 177 +774 609 176 +775 610 176 +776 610 175 +777 611 174 +778 612 173 +779 612 172 +780 613 172 +781 614 171 +782 615 170 +783 615 169 +784 616 168 +785 617 168 +786 617 167 +787 618 166 +788 619 165 +789 620 164 +790 621 164 +791 622 163 +792 622 162 +793 623 161 +794 624 160 +795 625 160 +796 625 159 +797 626 158 +798 627 157 +799 627 156 +800 628 156 +801 629 155 +802 629 154 +803 630 153 +804 631 152 +805 632 152 +806 632 151 +807 633 150 +808 635 150 +809 636 149 +810 636 148 +811 638 147 +812 638 146 +813 639 146 +814 640 145 +815 640 144 +816 644 144 +817 645 143 +818 646 142 +819 646 141 +820 647 141 +821 648 140 +822 649 139 +823 649 138 +824 651 138 +825 652 137 +826 652 136 +827 653 135 +828 655 135 +829 656 134 +830 657 133 +831 657 132 +832 658 132 +833 659 131 +834 660 130 +835 661 129 +836 661 128 +837 662 128 +838 663 127 +839 664 126 +840 665 125 +841 665 124 +842 667 124 +843 668 123 +844 669 122 +845 669 121 +846 670 121 +847 671 120 +848 672 119 +849 673 118 +850 674 118 +851 674 117 +852 675 116 +853 676 115 +854 677 114 +855 678 114 +856 679 113 +857 679 112 +858 680 111 +859 681 110 +860 684 110 +861 685 109 +862 686 109 +863 687 108 +864 688 107 +865 688 106 +866 689 105 +867 690 104 +868 691 104 +869 691 103 +870 692 102 +871 693 101 +872 693 100 +873 694 100 +874 695 99 +875 695 98 +876 696 97 +877 697 96 +878 698 96 +879 699 95 +880 700 94 +881 701 93 +882 701 93 +883 702 92 +884 703 91 +885 704 90 +886 704 89 +887 705 88 +888 706 88 +889 706 87 +890 707 86 +891 708 85 +892 709 84 +893 709 84 +894 710 83 +895 711 82 +896 712 81 +897 712 80 +898 713 80 +899 714 79 +900 715 78 +901 716 77 +902 716 77 +903 717 76 +904 718 75 +905 719 74 +906 719 73 +907 720 72 +908 721 72 +909 721 71 +910 722 70 +911 723 69 +912 723 68 +913 724 68 +914 725 67 +915 725 66 +916 726 65 +917 727 64 +918 728 64 +919 729 63 +920 730 62 +921 731 61 +922 731 61 +923 732 60 +924 733 59 +925 733 58 +926 734 57 +927 735 57 +928 736 56 +929 736 55 +930 737 54 +931 738 53 +932 738 53 +933 739 52 +934 740 51 +935 740 50 +936 741 49 +937 742 49 +938 743 48 +939 744 47 +940 745 46 +941 746 45 +942 747 45 +943 747 44 +944 748 43 +945 749 42 +946 749 41 +947 750 41 +948 751 40 +949 751 39 +950 752 38 +951 753 37 +952 753 37 +953 754 36 +954 755 35 +955 756 34 +956 757 34 +957 757 33 +958 759 32 +959 759 31 +960 760 30 +961 761 30 +962 762 29 +963 763 28 +964 763 27 +965 764 26 +966 765 26 +967 765 25 +968 766 24 +969 767 23 +970 767 22 +971 768 22 +972 769 21 +973 769 20 +974 770 19 +975 771 18 +976 772 18 +977 772 17 +978 773 16 +979 774 15 +980 775 15 +981 776 14 +982 777 13 +983 777 12 +984 778 11 +985 779 11 +986 780 10 +987 780 9 +988 781 8 +989 782 7 +990 782 7 +991 783 6 +992 784 5 +993 785 4 +994 785 3 +995 786 3 +996 787 2 +997 787 1 +998 788 0 +999 789 0 diff --git a/codes/__pycache__/create_traindata.cpython-38.pyc b/codes/__pycache__/create_traindata.cpython-38.pyc new file mode 100644 index 0000000..d3303c1 Binary files /dev/null and b/codes/__pycache__/create_traindata.cpython-38.pyc differ diff --git a/codes/create_traindata.py b/codes/create_traindata.py new file mode 100644 index 0000000..9a81f73 --- /dev/null +++ b/codes/create_traindata.py @@ -0,0 +1,56 @@ +import pandas as pd +from sklearn.model_selection import train_test_split +from itertools import product +import joblib + + +def get_state_vect_cols(prefix=''): + if prefix: + prefix += '_' + vectors = ['r', 'v'] + components = ['x', 'y', 'z'] + col_names = [f'{prefix}{v}_{c}' for v, c in product(vectors, components)] + return col_names + + +def create_train_data(seed = 0, test_size = 0.2): + """ + Description + ----------- + create a new train set from dataset(.parquet) by using seed + + Parameters + ---------- + seed : int (default=-1) + seed for train_test_split, let's say seed = 0 means random + + test_size : double (default=0.2) + test_size for train_test_split + + Returns + ------- + and traindata in folder "create_traindata" named "seed_{seed}.td" + + """ + + + df = pd.read_parquet("traindata/physics_preds.parquet") + feature_cols = [ + 'elapsed_seconds' + ] + get_state_vect_cols('physics_pred') + get_state_vect_cols('start') + print(feature_cols) + # The target values are the errors between the physical model predictions + # and the ground truth observations + target_cols = get_state_vect_cols('physics_err') + print(target_cols) + # Create feature and target matrices + X = df[feature_cols] + y = df[target_cols] + data_keys = ['X_train', 'X_test', 'y_train', 'y_test'] + if seed == 0: + data_vals = train_test_split(X, y, test_size=test_size) + else: + data_vals = train_test_split(X, y, test_size=test_size, random_state=seed) + train_test_data = dict(zip(data_keys, data_vals)) + + joblib.dump(train_test_data, f"create_datas/seed_{seed}.td") diff --git a/create_datas/seed_114.td b/create_datas/seed_114.td new file mode 100644 index 0000000..3a05915 Binary files /dev/null and b/create_datas/seed_114.td differ diff --git a/create_datas/seed_514.td b/create_datas/seed_514.td new file mode 100644 index 0000000..4d995f1 Binary files /dev/null and b/create_datas/seed_514.td differ diff --git a/regressors/__pycache__/linear_sum_regressor.cpython-38.pyc b/regressors/__pycache__/linear_sum_regressor.cpython-38.pyc new file mode 100644 index 0000000..6dde935 Binary files /dev/null and b/regressors/__pycache__/linear_sum_regressor.cpython-38.pyc differ diff --git a/regressors/__pycache__/normal_use.cpython-38.pyc b/regressors/__pycache__/normal_use.cpython-38.pyc new file mode 100644 index 0000000..3a310df Binary files /dev/null and b/regressors/__pycache__/normal_use.cpython-38.pyc differ diff --git a/regressors/__pycache__/one_regressor.cpython-38.pyc b/regressors/__pycache__/one_regressor.cpython-38.pyc new file mode 100644 index 0000000..64ec046 Binary files /dev/null and b/regressors/__pycache__/one_regressor.cpython-38.pyc differ diff --git a/regressors/__pycache__/stacking_regressor.cpython-38.pyc b/regressors/__pycache__/stacking_regressor.cpython-38.pyc new file mode 100644 index 0000000..6c40349 Binary files /dev/null and b/regressors/__pycache__/stacking_regressor.cpython-38.pyc differ diff --git a/regressors/linear_study.py b/regressors/linear_study.py new file mode 100644 index 0000000..b949495 --- /dev/null +++ b/regressors/linear_study.py @@ -0,0 +1 @@ +# wait for tommorow! \ No newline at end of file diff --git a/regressors/linear_sum_regressor.py b/regressors/linear_sum_regressor.py new file mode 100644 index 0000000..635aa36 --- /dev/null +++ b/regressors/linear_sum_regressor.py @@ -0,0 +1,90 @@ +from normal_use import * + +sumRegressors = [LGBMRegressor, RandomForestRegressor, XGBRegressor, CatBoostRegressor] +sumRegressor = Union[type(sumRegressors)] +sumParams = [{},{},{},{"silent": True}] +weight = [0.1, 0.2, 0.3, 0.4] +Sums = {} +train_test_data = None +out_weights = [] + +def get_random_small_train(X, y, Percentage = 0.8): + # return X_train & y_train + data_keys = ['X_train', 'X_test', 'y_train', 'y_test'] + data_vals = train_test_split(X, y, test_size=(1-Percentage)) + train_test_data = dict(zip(data_keys, data_vals)) + return train_test_data['X_train'], train_test_data['y_train'] + + +def train_linear(id, regType: sumRegressor, use_RFsample = False): + X, ys = train_test_data['X_train'], train_test_data['y_train'] + if use_RFsample: + # X, ys = get_random_small_train(X, ys) + # which xxx_moon? + pass + check_X_y(X, ys, multi_output=True) + models = {} + for target_col in ys.columns: + y = ys[target_col] + reg = regType(**sumParams[id]) + reg.fit(X, y) + models[target_col] = reg + joblib.dump(models, f"linear/{regType.__name__}_{id}.model") + + +def eval_linear(id, regType: sumRegressor): + models = joblib.load(f"linear/{regType.__name__}_{id}.model") + X, ys = train_test_data['X_test'], train_test_data['y_test'] + evals = [] + out_w_dict = {'Regressor': regType.__name__, 'Weight': weight[id]} + out_weights.append(out_w_dict) + for target_col, reg in models.items(): + y_hat = reg.predict(X) # fake + y = ys[target_col] # real + rmse = metrics.mean_squared_error(y, y_hat, squared=False) + r2 = metrics.r2_score(y, y_hat) + eval_dict = {'Error': target_col, 'RMSE': rmse, 'R^2': r2} + evals.append(eval_dict) + if Sums.get(target_col) is None: + Sums[target_col] = weight[id] * y_hat + else: + Sums[target_col] += weight[id] * y_hat + print(f"{regType.__name__}_{id}") + print(pd.DataFrame(evals)) + + +def only_linear(trainset): + """ + Description + ----------- + create a linear combination, weight and regressors here to change + + Parameters + ---------- + trainset : dict + train_data_set + + Returns + ------- + print result on screen + """ + global train_test_data + train_test_data = trainset + + for i, reg in enumerate(sumRegressors): + train_linear(i, reg) + for i, reg in enumerate(sumRegressors): + eval_linear(i, reg) + ys = train_test_data['y_test'] + evals = [] + for target_col in Sums: + y_hat = Sums[target_col] # fake + y = ys[target_col] # real + rmse = metrics.mean_squared_error(y, y_hat, squared=False) + r2 = metrics.r2_score(y, y_hat) + eval_dict = {'Error': target_col, 'RMSE': rmse, 'R^2': r2} + evals.append(eval_dict) + print("linear sum for {} regressors!".format(len(sumRegressors))) + print(pd.DataFrame(out_weights)) + print(pd.DataFrame(evals)) + print("Average R2: ", average_R2(evals)) diff --git a/regressors/normal_use.py b/regressors/normal_use.py new file mode 100644 index 0000000..bc0a1f9 --- /dev/null +++ b/regressors/normal_use.py @@ -0,0 +1,23 @@ +from ngboost import NGBRegressor +from sklearn.ensemble import RandomForestRegressor +from catboost import CatBoostRegressor +from lightgbm import LGBMRegressor +from xgboost import XGBRegressor +from sklearn.linear_model import LogisticRegression +from sklearn.linear_model import LinearRegression +from sklearn.linear_model import Ridge +from sklearn.model_selection import KFold +import deepforest +import numpy as np +import pandas as pd +from typing import Union +from sklearn import metrics +from sklearn.model_selection import train_test_split +from sklearn.utils.validation import check_X_y +import joblib + +def average_R2(evals): + sum = 0 + for item in evals: + sum += item['R^2'] + return sum/len(evals) \ No newline at end of file diff --git a/regressors/one_regressor.py b/regressors/one_regressor.py new file mode 100644 index 0000000..fa13eeb --- /dev/null +++ b/regressors/one_regressor.py @@ -0,0 +1,64 @@ +from normal_use import * + + +Regressors = [NGBRegressor, RandomForestRegressor, CatBoostRegressor, LGBMRegressor, XGBRegressor] +Params = [{}, {}, {"silent": True},{},{}] +Regressor = Union[type(Regressors)] +train_test_data = None + + +def train_model(id, regType: Regressor): + X, ys = train_test_data['X_train'], train_test_data['y_train'] + check_X_y(X, ys, multi_output=True) + models = {} + for target_col in ys.columns: + y = ys[target_col] + reg = regType(**Params[id]) + reg.fit(X, y) + models[target_col] = reg + print(regType.__name__, target_col) + joblib.dump(models, f"models/{regType.__name__}.model") + + +def eval_model(regType: Regressor): + models = joblib.load(f"models/{regType.__name__}.model") + X, ys = train_test_data['X_test'], train_test_data['y_test'] + evals = [] + for target_col, reg in models.items(): + y_hat = reg.predict(X) # fake + y = ys[target_col] # real + rmse = metrics.mean_squared_error(y, y_hat, squared=False) + r2 = metrics.r2_score(y, y_hat) + eval_dict = {'Error': target_col, 'RMSE': rmse, 'R^2': r2} + evals.append(eval_dict) + print(regType.__name__) + print(pd.DataFrame(evals)) + print("Average R2: ", average_R2(evals)) + + +def train_one_models(trainsets): + """ + Description + ----------- + call this to start trainning each regressors. + + Parameters + ---------- + trainset : dict + use joblib to extract target dataset(create_datas) and put it in here. + + Returns + ------- + NO returns, but models in folder "models" and print R2 on screen + + """ + global train_test_data + train_test_data = trainsets + + for i, reg in enumerate(Regressors): + train_model(i, reg) + + for reg in Regressors: + eval_model(reg) + + \ No newline at end of file diff --git a/regressors/stacking_regressor.py b/regressors/stacking_regressor.py new file mode 100644 index 0000000..1e103f3 --- /dev/null +++ b/regressors/stacking_regressor.py @@ -0,0 +1,119 @@ +from normal_use import * + + +# -------------------------- here is stacking method -------------------------- +kf = KFold(n_splits=5, shuffle=True) +train_test_data = None +target_cols = None + +stacking_model_regressors = [CatBoostRegressor, LGBMRegressor, XGBRegressor, RandomForestRegressor] +stacking_model_params = [{"silent": True}, {}, {}, {}] + +# --------- change the stacking model here, use anything you want! --------- # +# LinearRegression, Ridge, XGBRegressor, CatBoostRegressor, LGBMRegressor +# deepforest.CascadeForestRegressor +REG_TOTAL = Ridge + + +class SklearnWrapper: + def __init__(self, clf, seed=0, params={}): + params['random_state'] = seed + self.clf = clf(**params) + + def train(self, x_train, y_train): + self.clf.fit(x_train, y_train) + + def predict(self, x): + return self.clf.predict(x) + + +def get_oof(clf, col_name): + x_train = train_test_data['X_train'] + y_train = train_test_data['y_train'][col_name] + x_test = train_test_data['X_test'] + + oof_train = np.zeros((x_train.shape[0],)) + oof_test = np.zeros((x_test.shape[0],)) + oof_test_skf = np.empty((5, x_test.shape[0])) + + for i, (train_index, valid_index) in enumerate(kf.split(x_train, y_train)): + trn_x, trn_y, val_x, val_y = x_train.iloc[train_index], y_train.iloc[ + train_index], x_train.iloc[valid_index], y_train.iloc[valid_index] + + clf.train(trn_x, trn_y) + oof_train[valid_index] = clf.predict(val_x) + oof_test_skf[i, :] = clf.predict(x_test) + + oof_test[:] = oof_test_skf.mean(axis=0) + return oof_train.reshape(-1, 1), oof_test.reshape(-1, 1) + + +def stack_model(train_stack, test_stack, y): + train_stack = np.hstack(train_stack) + test_stack = np.hstack(test_stack) + + oof = np.zeros((train_stack.shape[0],)) + + # usually we use this + # predictions = np.zeros((test_stack.shape[0],)) + # deepforest.CascadeForestRegressor needed below + predictions = np.zeros((test_stack.shape[0],1)) + + scores = [] + for fold_, (trn_idx, val_idx) in enumerate(kf.split(train_stack, y)): + trn_data, trn_y = train_stack[trn_idx], y.iloc[trn_idx] + val_data, val_y = train_stack[val_idx], y.iloc[val_idx] + + clf = REG_TOTAL() + clf.fit(trn_data, trn_y) + + tmp = clf.predict(test_stack) + tmp = tmp.reshape(-1,1) + predictions += tmp/5 + + return oof, predictions + + +def stacking_train(trainset): + """ + Description + ----------- + start stacking train + + Parameters + ---------- + trainset : dict + train_data_set + + Returns + ------- + print result + + """ + global target_cols, train_test_data + train_test_data = trainset + target_cols = train_test_data['y_train'].columns + + evals = [] + for col_name in target_cols: + oof_train = [] + oof_test = [] + y_train = train_test_data['y_train'][col_name] + for i, (reg, param) in enumerate(zip(stacking_model_regressors, stacking_model_params)): + regressor = SklearnWrapper(reg, params=param) + t_train, t_test = get_oof(regressor, col_name=col_name) + oof_train.append(t_train) + oof_test.append(t_test) + oof_stack, prediction_stack = stack_model(oof_train, oof_test, y_train) + + y_hat = prediction_stack # fake + y = train_test_data['y_test'][col_name] # real + rmse = metrics.mean_squared_error(y, y_hat, squared=False) + r2 = metrics.r2_score(y, y_hat) + eval_dict = {'Error': col_name, 'RMSE': rmse, 'R^2': r2} + evals.append(eval_dict) + print(f"{col_name} finished") + print(f"Stacking -- {REG_TOTAL.__name__}") + print(pd.DataFrame(evals)) + print("Average R2: ", average_R2(evals)) + diff --git a/test_full.py b/test_full.py new file mode 100644 index 0000000..ab8312e --- /dev/null +++ b/test_full.py @@ -0,0 +1,27 @@ +# %% +import joblib +import sys +sys.path.append("./codes") +sys.path.append("./regressors") +import create_traindata +import one_regressor +import stacking_regressor +import linear_sum_regressor + +# %% +# create train data +seed = 514 +create_traindata.create_train_data(seed=seed) +train_test_data = joblib.load(f"create_datas/seed_{seed}.td") + +# %% +# test one regressor +one_regressor.train_one_models(train_test_data) + +# %% +# test stacking method +stacking_regressor.stacking_train(train_test_data) + +# %% +# test linear combination +linear_sum_regressor.only_linear(train_test_data) \ No newline at end of file diff --git a/traindata/physics_preds.parquet b/traindata/physics_preds.parquet new file mode 100644 index 0000000..8ced3e8 Binary files /dev/null and b/traindata/physics_preds.parquet differ diff --git a/traindata/usstratcom_data.parquet b/traindata/usstratcom_data.parquet new file mode 100644 index 0000000..7fe6f1d Binary files /dev/null and b/traindata/usstratcom_data.parquet differ